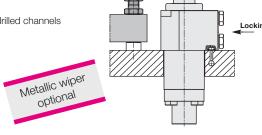
Swinging

Clamping

Issue 3-15 E B 1.880


Swing Clamp with Piston Rod Locking

Top flange, reinforced swing mechanism, position monitoring optional, double acting, max. operating pressure 250 bar

Advantages

- High process safety
- Self-locking patented piston rod locking
- Reinforced swing mechanism
- Optional position monitoring electrical or
- Compact design
- Alternatively pipe thread or drilled channels
- Standard FKM wiper
- Metallic wiper optional

Application

Hydraulic swing clamps are used for clamping of workpieces, when it is essential to keep the clamping area free of straps and clamping components for unrestricted workpiece loading and

The version with piston rod locking maintains the clamping force also after a pressure drop.

This series is particularly suited for

- Pallet changing systems
- Transfer lines
- Workpiece change with handling systems
- Automatic manufacturing systems
- Assembly lines
- Test systems for motors, gears, axis ...

Function

The hydraulic swing clamp is a pull-type cylinder where a part of the total stroke is used to swing the piston. The piston rod locking is made by a separately-controlled double-acting wedgeshaped piston.

Clamping: 1. Swinging and clamping 2. Lockina

Unclamping: 1. Release locking

2. Unclamping and swinging back

Self-locking

The wedge-shaped piston is designed as a selflocking piston so that the swing clamp can be depressurised after clamping. The previously generated clamping force will be maintained. Conditions: Before depressurising, the locking pressure must be available at least for 3 sec-

Control and important notes

See page 4.

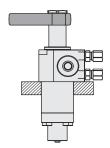
Special features

Self-locking piston rod locking

The patented piston rod locking is made by friction locking by a separately-controllable doubleacting wedge-shaped piston with self-locking. In the case of a pressure drop or complete pressure reduction, the clamping force will be maintained.

Reinforced swing mechanism

The reinforced swing mechanism without overload protection device endures a collision with the workpiece during clamping up to a pressure

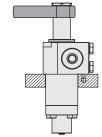

Accessory - Position monitoring

As an option, the swing clamps are available with an extended switch rod at the cylinder bottom. Here a control cam can be fixed to control the clamping and unclamping position. As accessories pneumatic and electrical position monitorings are available.

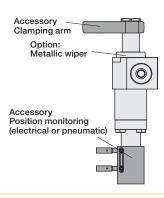
Option: metallic wiper

The optionally available metallic wiper protects the FKM wiper against mechanical damage.

Connecting possibilities Pipe thread

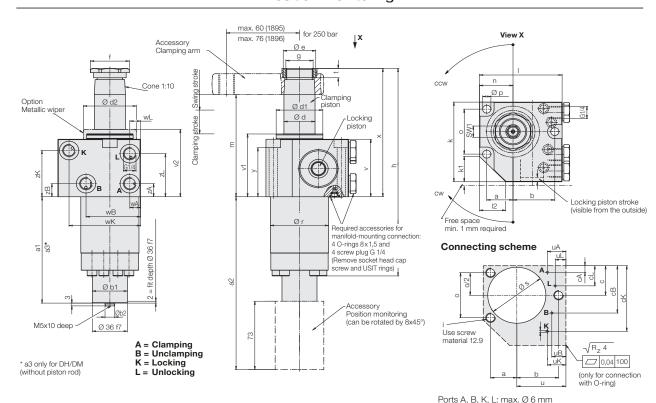


Versions


KDH, KDM: without switch rod

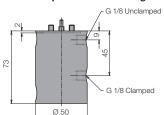
Drilled channels

KMH, KMM: with switch rod

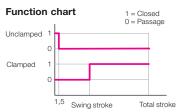


Römheld GmbH

Subject to modifications

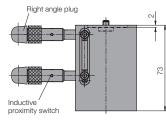


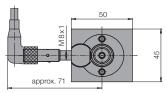
Dimensions Position monitoring

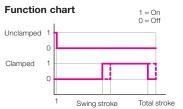


Accessory - Position monitoring

Pneumatic position monitoring






Part no.	for 1895	for 1896
	0353808	0353809

For the evaluation of the pneumatic position monitoring we recommend a differential pressure switch, which allows a parallel connection of max. 8 swing clamps.

Electrical position monitoring

Part no.	for 1895	for 1896
without switch	0353815	0353813
with standard switches	0353814	0353811

Technical data for proximity switches

1030 V DC
15 %
200 mA
interlock
PNP
stainless steel
IP 67
-25+70°C
Plug
5 m
Yes
Yes

Delivery

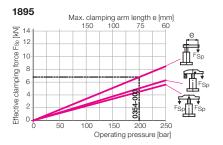
The position monitorings are not delivered mounted at the swing clamp.

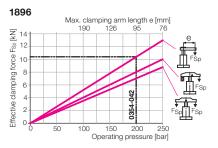
The housings can be mounted rotated by 8x45°. Fixing screws and signal sleeve are included in the delivery.

Electrical position monitorings with standard switches are delivered with 2 inductive proximity switches and 2 right angle plugs.

Part no. O-ring (spare part)	
Proximity switch	3829077
Right angle plug	3829088

Further proximity switches see data sheet B 1.552


2 Römheld GmbH
B 1.8805 / 3-15 E
Subject to modifications



Dimensions Technical data

Max. force to pull at 250 bar	[kN]	11.3	17.6
Effective clamping force	[kN]	see dia	,
Clamping stroke	[mm]	22	20
Swing stroke	[mm]	13	16
Total stroke	[mm]	35 +0,4	36 +0,3
Min. operating pressure	[bar]	30	30
Max. flow rate	[cm ³ /s]	20	36
Oil volume/max.stroke	[cm ³]	18.4	29.8
Oil volume/max. return stroke	[cm ³]	44.4 27	72.9 37
a a1 only MH/MM	[mm] [mm]	113.5	129
a2	[mm]	184.5	200
a3* only DH/DM	[mm]	103.5	116
b	[mm]	43	55
Ø b1	[mm]	36	45
Ø b2 f7	[mm]	10	12
С	[mm]	31.5	40.5
cA	[mm]	7	9.5
сВ	[mm]	50.5	72
cK	[mm]	70	89.5
CL CL	[mm]	21.5	25
Ød	[mm]	32	40
Ø d1	[mm]	48	60
Ø d2	[mm]	54.5	75
Ø e f	[mm]	33.5 40	45 55
	[mm] [mm]	M28x1.5	M35x1.5
g h	[mm]	221.5	253.8
İ	[mm]	M 8	M 10
k	[mm]	85	110
k1	[mm]	27	35
I	[mm]	85	110
12	[mm]	27	35
m ±1	[mm]	109.4	117.9
n	[mm]	34.5	47
0	[mm]	48	65
Øp	[mm]	8.5	10.5
Ør -0.1	[mm]	59.8	79.8
Øs +1 t	[mm]	60 10	80 11
U	[mm] [mm]	50.5	63
uA	[mm]	19	23
uB	[mm]	14.5	12.5
uK	[mm]	19	21
uL	[mm]	11	12.5
V	[mm]	61.4	66.4
v1	[mm]	67	72
v2	[mm]	71.9	76.9
wA	[mm]	11	13
wB	[mm]	56	66.5
wK	[mm]	66	89.5
wL	[mm]	11	13
x +0,6 -0,5	[mm]	137	151
x max.*	[mm]	139	153.6
У - ^	[mm]	52.4	55.4
zA -D	[mm]	14	12
zB zk	[mm]	14 50.4	55.5 55.5
zK zL	[mm] [mm]	50.4	55.5 41
SW1	[mm]	12	17
	[iiiiii]	Part no.	Part no.
Clockwise rotation 90°		1895304KXX35	1896304KXX36
Counterclockwise rotation 90°		1895404KXX35	1896404KXX36
0 degree		1895444KXX35	1896444KXX36

Effective clamping force F_{Sp} as a function of the operating pressure p

Important note

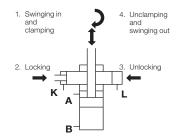
The clamping force diagrams are only valid, if "clamping" and "locking" are are controlled separately (see page 4).

Clamping arms, accessories and special clamping arms see data sheet B 1.881.

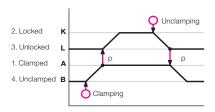
XX: Version DH/DM = without/with metallic wiper without switch rod MH/MM = without/with metallic wiper with switch rod

Accessory	Part no.	Part no.
Metallic wiper, complete (spare part)	0341100	0341 101
O-ring 8x 1.5	3000343	3000343
Screw plug G 1/4	3300821	3300821
Spare nut / tightening torque	3527015 /90 Nm	3527048/160 Nm

Key for available angles of rotation			
Angle of rotation (±1°)	Part no.		
90°	189XX04KXXXX		
60°	189XX24KXXXX		
45°	189XX34KXXXX		

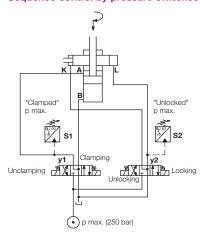

 Römheld GmbH
 3

 B 1.8805 / 3-15 E
 Subject to modifications



Function flow • Function chart Hydraulic control • Important notes

Function sequence


Function chart

Hydraulic control

The control is effected by two separate doubleacting switching circuits.

Sequence control by pressure switches

Switching sequence

1. Starting position

y1 and y2 de-energised or y1 "Unclamping"; y2 "Unlocking"

2. Clamping

- → 1. y1 "Clamping"; y2 de-energised
 → 2. S1 = pmax → y2 "Locking"
- 3. Depressurise (as required)

Before depressurising, the locking pressure must be available at least for 3 seconds.

→ y1 and y2 de-energised

4. Unclamping

- → 1. y2 "Unlocking"
- → 2. S2 = pmax → y1 "Unclamping"

Important notes

Swing clamps must only be used for clamping of workpieces in industrial applications and may only be operated with hydraulic oil. They can generate very high forces. The workpiece, the fixture or the machine must be in the position to compensate these forces.

In the effective area of piston rod and clamping arm there is the danger of crushing.

The manufacturer of the fixture or the machine is obliged to provide effective protection devices.

The swing clamp has no overload protection device. When mounting the clamping arm, the clamping arm or the hexagon socket in the piston have to be backed up for tightening and untightening the fixing nut.

During loading and unloading of the fixture and during clamping a collision with the clamping arm has to be avoided. Remedy: Mount position adaptor.

Operating conditions, tolerances and other data see data sheet A 0.100.

4 Römheld GmbH