Swing Clamps with Sturdy Swing Mechanism Top flange type, with optional position monitoring, double acting, max. operating pressure 350 bar #### **Application** Hydraulic swing clamps are used for clamping of workpieces, when it is essential to keep the clamping area free of straps and clamping components for unrestricted workpiece loading and unloading. Due to the sturdy swing mechanism and the manifold possibilities of position monitoring these swing clamps are particularly suited for - Automatic manufacturing systems - Clamping fixtures with workpiece loading via handling systems - Transfer lines - Test systems for motors, gears and axes - Assembly lines - Special machine tools #### Description The hydraulic swing clamp is a pull-type cylinder where a part of the total stroke is used to swing the piston. The favourable area ratio (piston/piston rod) allows high clamping forces already at relatively low oil pressures. Due to the sturdy swing mechanism the angle position of the clamping arm remains the same after a slight collision with the workpiece during loading or unloading. Also a collision during the clamping process is not critical. When using high flow rates the swing speed is limited by installed throttle points. For connection via drilled channels, adjustable throttle valves can be screwed instead of the screw pluas. The FKM wiper at the piston rod can be protected against coarse and hot swarf by an optionally available metallic wiper (see page 6). The different possibilities of the position monitoring are presented at the side. Important notes see page 6. #### **Advantages** - 5 sizes available - Compact design partially recessible - High clamping force at low pressures - Sturdy swing mechanism - Insensitive against high flow rates - Indexing of the clamping arm in a specified position is possible - Special swing angle easily realisable - Standard FKM wiper - Metallic wiper optional - Throttle valves available as accessory - Screw counterbores coverable - position monitoring available in six variants - Hydraulic and pneumatic ports integrated in the flange - Mounting position: any #### Installation and connecting possibilities Pipe thread #### Pneumatic position monitoring integrated Monitoring of the clamping arm in clamping position (adjustable) #### Monitoring of the piston in unclamping position #### **Both controls combined** # Indexing Metallic wiper for coarse and hot swarf Accessory Throttle valve (see page 4) #### **Drilled channels** #### Position monitoring as accessories Switch rod for external sensors #### Pneumatic position monitoring in clamping and unclamping position #### **Electrical position monitoring** in clamping and unclamping position # Versions: Code letters A, B, C, D, H, P, Q **Dimensions • Swing angles** **B** (with switch rod) A = Clamping **B** = Unclamping **E** = Unclamped (pneumatic) **S** = Clamped (pneumatic) #### Clamping position ±1° Swing direction Swing direction Example for swing angle < 90° off-position ±3° wing angle 90° Ø p1 off-position ±3° Indexing mark Ø p2 clamping position Plastic covers see page 4 5 x 45° nax. Ġ at both sides only for 184<u>3</u> Pneumatic port M5 at both sides at 45° only for 1843 B, D and H # Swing angle # 1. Swing angle 90° (standard) Part no. 90° cw 184X X090 RXXD 90° ccw 184X X090 LXXD 0° 184X X000 0XXD ## 2. Swing angle α < 90° #### α = 15° to 75° in gradation of 5° By insertion of a distance plate the return stroke of the piston is reduced and thus the swing angle is reduced. Clamping stroke and clamping position remain the same. The swing stroke and the dimensions h, h1, m and x are reduced by y: $y = (90^{\circ} - \alpha^{\circ}) * k$ (k see chart page 3) Example: 1845 A090 L30D Swing clamp Desired swing angle 45° ccw 1845 A045 L30D Part no. Shortening: $y = (90^{\circ} - 45^{\circ}) * 0.12 \text{ mm/}^{\circ} = 5.4 \text{ mm}$ #### 3. Swing angle > 90° Available on request! Switching area 2 ÷ 10 mm Use screws 12.9 Pneumatic valve Connecting holes: (actuated by the clamping arm) Silencer for pneumatic valve Attention danger of collision! The contact bolt for the actuation of the pneumatic valve must be completely screwed into the angle bracket for start up (see page 4 The adjustment is made with clamped workpiece to approx. 5 mm # D (Monitoring "Unclamped") With pocket holes, connection S can be used for venting #### Important note The lower part of the swing clamp must be protected against swarf and dirt for trouble-free functioning of the orifice plate. # Swing angle $\alpha < 90^\circ$ α see position monitoring "Clamped" (see accessory page 5) #### Pneumatic position monitoring versions C, D, H u 2 x hydraulics (A, B) max. Ø 5 **H** (Combination C+D) Q (Combination P+D) Spare-O-ring 8 x 1.5 part no. 3000343 3 x pneumatics max. Ø 2.5 (only as required) Spare-O-ring 3.68 x 1.78 part no. 3000 334 #### Technical data | [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] | 50
70
62.4
52
26.5
98
M6
6.6
11
18.4
45
30
7.5
36.5
18.5
27
26.4
31
36
12
22.5
22
84/85.2
11
1.7 | 62
81
63.9
52
31
105
M8
9
15
15.4
52
30
9
42
24.5
33.5
26.4
31
36
13
24.5
21
90/91.7
11.5
2.3 | | 0.152 88 105 80.3 56 44 136 M12 13 20 15.4 76 33 10 53 32 44.5 30.4 36 41 20 32 25 118.5/118.8 12 6 1846 X090 R36DM 1846 X090 L36DM | 100 120 84.8 56 50 146 M12 13 20 17.4 90 33 11 62 35 53.5 30.4 36 41 20.5 35 26 128/129.6 15 8.9 | |--|--|--|--|--|--| | [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] | 50
70
62.4
52
26.5
98
M6
6.6
11
18.4
45
30
7.5
36.5
18.5
27
26.4
31
36
12
22.5
22
84/85.2 | 62
81
63.9
52
31
105
M8
9
15
15.4
52
30
9
42
24.5
33.5
26.4
31
36
13
24.5
21 | 75
95
74.9
56
37
118
M10
11
18
17.4
60
33
10
50
28
41.5
30.4
35
40
17
28
24.5
106/107.7 | 88 105 80.3 56 44 136 M12 13 20 15.4 76 33 10 53 32 44.5 30.4 36 41 20 32 25 118.5/118.8 | 100
120
84.8
56
50
146
M12
13
20
17.4
90
33
11
62
35
53.5
30.4
36
41
20.5
35 | | [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] | 50
70
62.4
52
26.5
98
M6
6.6
11
18.4
45
30
7.5
36.5
18.5
27
26.4
31
36
12
22.5
22 | 62
81
63.9
52
31
105
M8
9
15
15.4
52
30
9
42
24.5
33.5
26.4
31
36
13
24.5
21 | 75
95
74.9
56
37
118
M10
11
18
17.4
60
33
10
50
28
41.5
30.4
35
40
17
28
24.5 | 88 105 80.3 56 44 136 M12 13 20 15.4 76 33 10 53 32 44.5 30.4 36 41 20 32 25 118.5/118.8 | 100
120
84.8
56
50
146
M12
13
20
17.4
90
33
11
62
35
53.5
30.4
36
41
20.5
35 | | [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] | 50
70
62.4
52
26.5
98
M6
6.6
11
18.4
45
30
7.5
36.5
18.5
27
26.4
31
36
12 | 62
81
63.9
52
31
105
M8
9
15
15.4
52
30
9
42
24.5
33.5
26.4
31
36
13
24.5 | 75
95
74.9
56
37
118
M10
11
18
17.4
60
33
10
50
28
41.5
30.4
35
40
17
28
24.5 | 88
105
80.3
56
44
136
M12
13
20
15.4
76
33
10
53
32
44.5
30.4
36
41 | 100
120
84.8
56
50
146
M12
13
20
17.4
90
33
11
62
35
53.5
30.4
36
41
20.5 | | [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] | 50
70
62.4
52
26.5
98
M6
6.6
11
18.4
45
30
7.5
36.5
18.5
27
26.4
31
36
12 | 62
81
63.9
52
31
105
M8
9
15
15.4
52
30
9
42
24.5
33.5
26.4
31
36
13 | 75
95
74.9
56
37
118
M10
11
18
17.4
60
33
10
50
28
41.5
30.4
35
40
17 | 88
105
80.3
56
44
136
M12
13
20
15.4
76
33
10
53
32
44.5
30.4
36
41 | 100
120
84.8
56
50
146
M12
13
20
17.4
90
33
11
62
35
53.5
30.4
36
41
20.5 | | [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] | 50
70
62.4
52
26.5
98
M6
6.6
11
18.4
45
30
7.5
36.5
18.5
27
26.4
31 | 62
81
63.9
52
31
105
M8
9
15
15.4
52
30
9
42
24.5
33.5
26.4
31
36 | 75
95
74.9
56
37
118
M10
11
18
17.4
60
33
10
50
28
41.5
30.4
35 | 88
105
80.3
56
44
136
M12
13
20
15.4
76
33
10
53
32
44.5
30.4 | 100
120
84.8
56
50
146
M12
13
20
17.4
90
33
11
62
35
53.5
30.4
36
41 | | [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] | 50
70
62.4
52
26.5
98
M6
6.6
11
18.4
45
30
7.5
36.5
18.5
27
26.4
31 | 62
81
63.9
52
31
105
M8
9
15
15.4
52
30
9
42
24.5
33.5
26.4 | 75
95
74.9
56
37
118
M10
11
18
17.4
60
33
10
50
28
41.5
30.4 | 88
105
80.3
56
44
136
M12
13
20
15.4
76
33
10
53
32
44.5
30.4 | 100
120
84.8
56
50
146
M12
13
20
17.4
90
33
11
62
35
53.5
30.4 | | [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] | 50
70
62.4
52
26.5
98
M6
6.6
11
18.4
45
30
7.5
36.5
18.5
27
26.4 | 62
81
63.9
52
31
105
M8
9
15
15.4
52
30
9
42
24.5
33.5
26.4 | 75
95
74.9
56
37
118
M10
11
18
17.4
60
33
10
50
28
41.5
30.4 | 88
105
80.3
56
44
136
M12
13
20
15.4
76
33
10
53
32
44.5 | 100
120
84.8
56
50
146
M12
13
20
17.4
90
33
11
62
35
53.5 | | [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] | 50
70
62.4
52
26.5
98
M6
6.6
11
18.4
45
30
7.5
36.5
18.5
27 | 62
81
63.9
52
31
105
M8
9
15
15.4
52
30
9
42
24.5
33.5 | 75
95
74.9
56
37
118
M10
11
18
17.4
60
33
10
50
28
41.5 | 88
105
80.3
56
44
136
M12
13
20
15.4
76
33
10
53
32
44.5 | 100
120
84.8
56
50
146
M12
13
20
17.4
90
33
11
62
35 | | [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] | 50
70
62.4
52
26.5
98
M6
6.6
11
18.4
45
30
7.5
36.5
18.5 | 62
81
63.9
52
31
105
M8
9
15
15.4
52
30
9
42
24.5 | 75
95
74.9
56
37
118
M10
11
18
17.4
60
33
10
50
28 | 88
105
80.3
56
44
136
M12
13
20
15.4
76
33
10
53
32 | 100
120
84.8
56
50
146
M12
13
20
17.4
90
33
11
62
35 | | [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] | 50
70
62.4
52
26.5
98
M6
6.6
11
18.4
45
30
7.5
36.5 | 62
81
63.9
52
31
105
M8
9
15
15.4
52
30
9 | 75
95
74.9
56
37
118
M10
11
18
17.4
60
33
10
50
28 | 88
105
80.3
56
44
136
M12
13
20
15.4
76
33
10
53 | 100
120
84.8
56
50
146
M12
13
20
17.4
90
33
11
62 | | [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] | 50
70
62.4
52
26.5
98
M6
6.6
11
18.4
45
30
7.5 | 62
81
63.9
52
31
105
M8
9
15
15.4
52
30
9 | 75
95
74.9
56
37
118
M10
11
18
17.4
60
33
10 | 88
105
80.3
56
44
136
M12
13
20
15.4
76
33
10 | 100
120
84.8
56
50
146
M12
13
20
17.4
90
33
11 | | [mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm] | 50
70
62.4
52
26.5
98
M6
6.6
11
18.4
45
30 | 62
81
63.9
52
31
105
M8
9
15
15.4
52
30 | 75
95
74.9
56
37
118
M10
11
18
17.4
60
33 | 88
105
80.3
56
44
136
M12
13
20
15.4
76
33 | 100
120
84.8
56
50
146
M12
13
20
17.4
90 | | [mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm] | 50
70
62.4
52
26.5
98
M6
6.6
11
18.4
45 | 62
81
63.9
52
31
105
M8
9
15
15.4
52 | 75
95
74.9
56
37
118
M10
11
18
17.4
60 | 88
105
80.3
56
44
136
M12
13
20
15.4
76 | 100
120
84.8
56
50
146
M12
13
20
17.4
90 | | [mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm] | 50
70
62.4
52
26.5
98
M6
6.6
11
18.4 | 62
81
63.9
52
31
105
M8
9
15 | 75
95
74.9
56
37
118
M10
11
18
17.4 | 88
105
80.3
56
44
136
M12
13
20
15.4 | 100
120
84.8
56
50
146
M12
13
20
17.4 | | [mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm] | 50
70
62.4
52
26.5
98
M6
6.6
11 | 62
81
63.9
52
31
105
M8
9
15 | 75
95
74.9
56
37
118
M10
11
18 | 88
105
80.3
56
44
136
M12
13
20 | 100
120
84.8
56
50
146
M12
13
20 | | [mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm] | 50
70
62.4
52
26.5
98
M6
6.6 | 62
81
63.9
52
31
105
M8
9 | 75
95
74.9
56
37
118
M10
11 | 88
105
80.3
56
44
136
M12
13 | 100
120
84.8
56
50
146
M12
13 | | [mm]
[mm]
[mm]
[mm]
[mm]
[mm] | 50
70
62.4
52
26.5
98
M6
6.6 | 62
81
63.9
52
31
105
M8 | 75
95
74.9
56
37
118
M10 | 88
105
80.3
56
44
136
M12 | 100
120
84.8
56
50
146
M12 | | [mm]
[mm]
[mm]
[mm]
[mm]
[mm] | 50
70
62.4
52
26.5
98
M6 | 62
81
63.9
52
31
105
M8 | 75
95
74.9
56
37
118
M10 | 88
105
80.3
56
44
136
M12 | 100
120
84.8
56
50
146
M12 | | [mm]
[mm]
[mm]
[mm] | 50
70
62.4
52
26.5
98 | 62
81
63.9
52
31
105 | 75
95
74.9
56
37
118 | 88
105
80.3
56
44
136 | 100
120
84.8
56
50
146 | | [mm]
[mm]
[mm]
[mm] | 50
70
62.4
52
26.5 | 62
81
63.9
52
31 | 75
95
74.9
56
37 | 88
105
80.3
56
44 | 100
120
84.8
56 | | [mm]
[mm]
[mm] | 50
70
62.4
52 | 62
81
63.9
52 | 75
95
74.9
56 | 88
105
80.3
56 | 100
120
84.8 | | [mm]
[mm]
[mm] | 50
70
62.4 | 62
81
63.9 | 75
95
74.9 | 88
105
80.3 | 100
120 | | [mm] | 50
70 | 62
81 | 75
95 | 88
105 | 100 | | [mm] | 50 | 62 | 75 | 88 | 100 | | | 0.001 | 0.093 | | | 0.100 | | [mm/°] | 0.091 | 0.093 | 0.40 | 0.450 | 0.183 | | [mm] | 165/166.3 | 178/179.8 | 207/208.8 | 237.5/237.9 | 257/258.7 | | [mm] | 161/162.3 | 174/175.8 | 203/204.8 | 233.5/233.9 | 254/255.7 | | | G 1/8 | G 1/8 | G 1/4 | G 1/4 | G 1/4 | | [mm] | | M18x1.5 | M20x1.5 | M28x1.5 | M35x1.5 | | [mm] | 27 | 30 | 36 | 40 | 55 | | [mm] | 10 | 10 | 12 | 12 | 12 | | [mm] | 33 | 42 | 54 | 54.5 | 75 | | [mm] | | | 45 | | 60 | | [mm] | 16 | 20 | 25 | | 40 | | [mm] | 12 | 14 | 14 | | 20.5 | | [mm] | 28.5 | 31.5 | 35 | 43 | 56 | | [mm] | 40 | 45 | 54 | 66 | 76 | | [mm] | 37 | 45 | 54 | 66 | 76 | | [mm] | 23 | 28 | 36 | 45 | 55 | | | 9.6 | 14.8 | 30.5 | 57.2 | 92.7 | | | 4.9 | 7.2 | 15.8 | 28.3 | 43.7 | | | 4.15 | 6.15 | 10.17 | 15.9 | 23.75 | | | 2.14 | 3.01 | 5.27 | 7.86 | 11.19 | | | 20 | 28 | 60 | 110 | 185 | | nping [cm³/s] | 10 | 14 | 32 | 57 | 87 | | [bar] | 30 | 30 | 30 | 30 | 30 | | | 23 | | 30 | 36 | 39 | | | 11 | | 15 | 21 | 24 | | | 12 | | | | 18 | | | | | | | 39.°
e 4 | | ľ | nping [cm³/s] amping [cm³/s] amping [cm³/s] nping [cm²] amping [cm²] [cm²] [cm²] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [| [kN] se [mm] 12 [mm] 11 [mm] 23 [bar] 30 nping [cm³/s] 10 amping [cm³/s] 20 nping [cm³/s] 2.14 amping [cm²] 4.15 [cm³] 9.6 [mm] 23 [mm] 37 [mm] 40 [mm] 12 [mm] 12 [mm] 16 [mm] 28 [mm] 33 [mm] 10 [mm] 27 | [kN] see diagram page 3 or [mm] 12 12 [mm] 11 12 [mm] 23 24 [bar] 30 30 mping [cm³/s] 10 14 amping [cm³/s] 20 28 mping [cm²] 4.15 6.15 [cm³] 4.15 6.15 [cm³] 9.6 14.8 [mm] 23 28 [mm] 37 45 [mm] 40 45 [mm] 28.5 31.5 [mm] 12 14 [mm] 28 38 [mm] 28 38 [mm] 28 38 [mm] 33 42 [mm] 10 10 [mm] 27 30 | [kN] see diagram page 3 or calculation of the class [mm] 12 12 15 [mm] 11 12 15 [mm] 23 24 30 [bar] 30 30 30 anping [cm³/s] 10 14 32 amping [cm³/s] 20 28 60 apping [cm²] 4.15 6.15 10.17 [cm³] 4.9 7.2 15.8 [cm³] 9.6 14.8 30.5 [mm] 23 28 36 [mm] 37 45 54 [mm] 28.5 31.5 35 [mm] 12 14 14 [mm] 28 38 45 [mm] 28 38 45 [mm] 33 42 54 [mm] 10 10 12 [mm] 27 30 36 | [kN] see diagram page 3 or calculation of the clamping force on page [mm] 12 12 15 15 [mm] 11 12 15 21 [mm] 11 12 15 21 [mm] 23 24 30 36 [bar] 30 30 30 30 anping [cm³/s] 10 14 32 57 amping [cm³/s] 20 28 60 110 apping [cm²] 2.14 3.01 5.27 7.86 amping [cm²] 4.15 6.15 10.17 15.9 [cm³] 4.9 7.2 15.8 28.3 [cm³] 9.6 14.8 30.5 57.2 [mm] 23 28 36 45 [mm] 37 45 54 66 [mm] 40 45 54 66 [mm] 12 14 14 18 [mm] 28 38 | Code letter X see page 2. M = Option metallic wiper (see also page 6) h max. / h1 max. / x max. = upper edge nut Effective clamping force with accessory clamping arm as a function of the oil pressure ^{*} Clamping force for other lengths see page 4. $^{^{1)}}$ h / h1 / x = upper edge piston $^{2)}$ m = lower edge clamping arm # Accessories - Clamping arms • Plastic covers • Metallic wipers• Flow control valves Calculation of the flow rate • Calculation of the clamping force #### Clamping arm, max. 350 bar #### Clamping arm complete with angle #### Special clamping arm 1. Connecting dimensions #### 2. Admissible flow rate Q* In the chart on page 3, the admissible flow rates for clamping and unclamping with the clamping arms (accessories) are specified. Longer special clamping arms have a higher torque of inertia. To avoid an overload of the swing mechanism, the flow rate has to be reduced: #### 2.1 Moments of inertia are known $$Q_L = Q_e * \sqrt{\frac{J_e}{J_L}} \text{ cm}^3/\text{s}$$ Q_L = Flow rate with special clamping arm Q_e = Flow rate as per chart (page 3) J_e = Moment of inertia of the clamping arm (accessory) with contact bolt (chart) J_L = Moment of inertia special clamping arm determined with the help of the CAD model in the computer * Only for vertical mounting position! | Swing clamps | | 1843 | 1844 | 1845 | 1846 | 1847 | |---------------------------|------|---------|---------|---------|---------|---------| | a | [mm] | 58 | 75 | 93 | 120 | 154 | | b | [mm] | 17 | 22 | 26 | 32 | 38 | | С | [mm] | 28 | 36 | 45 | 60 | 72 | | c1 | [mm] | 14 | 20 | 23 | 28 | 36 | | Ød f7 | [mm] | 16 | 20 | 25 | 32 | 40 | | \emptyset d1 +0.1/+0.05 | [mm] | 15.8 | 19.8 | 24.8 | 31.8 | 39.8 | | е | [mm] | 35 | 50 | 60 | 80 | 100 | | f | [mm] | 16 | 16 | 22 | 26 | 34 | | g | [mm] | M14x1.5 | M18x1.5 | M20x1.5 | M28x1.5 | M35x1.5 | | g1 | [mm] | M8 | M10 | M12 | M16 | M20 | | h min/max | [mm] | 5/45 | 6/64 | 7/70 | 9/85 | 12/100 | | Ø k +0.1 | [mm] | 3 | 3 | 3 | 3 | 3 | | I + 0.5 | [mm] | 9.5 | 11 | 11 | 11.5 | 12 | | $m \pm 0.05$ | [mm] | 7.8 | 9.8 | 12 | 15 | 19 | | n | [mm] | 11 | 17 | 20 | 20 | 20 | | 0 | [mm] | 6 | 10 | 12 | 20 | 20 | | р | [mm] | 22.5 | 27 | 32 | 39 | 44 | | q | [mm] | 9 | 10 | 11 | 12.7 | 12.7 | | Ør | [mm] | 20 | 24.5 | 31 | 34.5 | 46 | | S | [mm] | 2.5 | 4 | 4 | 4.5 | 5 | | t | [mm] | 11 | 17.5 | 19 | 19 | 19 | | u | [mm] | 17 | 18 | 21 | 19 | 25 | | v1 | [mm] | 6 | 7 | 8 | 6 | 12 | | v2 | [mm] | 4 | 4 | 5 | 5 | 5 | | w1 | [mm] | 18 | 24 | 26 | 26 | 26 | | w2 | [mm] | 21 | 27 | 30 | 30 | 30 | | Part no Clamping arm | | | | | | | | Part no. Clamping arm | | | | | | | |---|--------|----------|----------|---------|----------|---------| | with contact bolt | | 0354152 | 0354153 | 0354154 | 0354155 | 0354259 | | Weight, approx. | [kg] | 0.19 | 0.39 | 0.69 | 1.43 | 2.64 | | Moment of inertia of J _e | [kgm²] | 0.00011 | 0.00046 | 0.0011 | 0.00398 | 0.01198 | | without thread g1 | | 3548660 | 3548661 | 3548803 | 3548804 | 3548919 | | Weight, approx. | [kg] | 0.16 | 0.34 | 0.62 | 1.28 | 2.34 | | Moment of inertia of Je | [kgm²] | 0.00007 | 0.00033 | 0.00084 | 0.00298 | 0.00896 | | complete with angle | | 0354156 | 0354157 | 0354158 | 0354159 | 0354175 | | Angle bracket complete | | 0184003 | 0184004 | 0184005 | 0184005 | 0184005 | | Plastic cover** | | 3300685 | 3300684 | 3300683 | 3300682 | 3300682 | | Metallic wiper | | 0341 104 | 0341 107 | 0341105 | 0341 100 | 0341101 | | Spare nut | | 3527092 | 3527014 | 3527099 | 3527015 | 3527048 | | Tightening torque | [Nm] | 16 | 30 | 42 | 90 | 160 | | ** Order 4 off per swing clamp | | | | | | | #### 2.2. Accessory Throttle valve Throttle valves are used - in order to reduce the swing speed of the clamping arm; - in order to improve the synchronism of several swing clamps. This application is only possible for manifoldmounting connection through drilled channels. #### Important note If throttling is too strong, the back pressure can trigger premature switching of pressure switches and sequence valves. #### Hydraulic symbol | Swing clamps | | | 1845 | |-------------------|------|---------|---------| | | | 1843 | 1846 | | | | 1844 | 1847 | | Α | [mm] | 16 | 21 | | B max. | [mm] | 13.5 | 17.5 | | C | [mm] | 18 | 23.6 | | G | | G 1/8 | G 1/4 | | SW1 | [mm] | 14 | 19 | | Tightening torque | [Nm] | 18 | 35 | | SW2 | [mm] | 8 | 8 | | SW3 | [mm] | 2.5 | 2.5 | | Weight | [kg] | 0.025 | 0.036 | | Part no. | | 2957209 | 2957210 | | | | | | # Special clamping arm #### Clamping force and admissible operating pressure Effective clamping force (general) $$F_{Sp} = \frac{p}{A + (B * L)} \le F_{adm.}$$ [kN] Admissible clamping force $$F_{adm} = \frac{C}{L}$$ [kN] $$\label{eq:padm} \mbox{Admissible operating pressure} \\ p_{\mbox{adm}} \, = \frac{D}{L} \, + \, E \leq 350 \qquad \qquad \mbox{[bar]}$$ L = special length [mm] p = pressure [bar] A, B, C, D, E = constants as per chart #### Constant | | 1843 | 1844 | 1845 | 1846 | 1847 | |---|-------|-------|-------|-------|-------| | Α | 46.64 | 33.15 | 18.98 | 12.72 | 8.93 | | В | 0.335 | 0.17 | 0.073 | 0.04 | 0.027 | | С | 210 | 420 | 900 | 1760 | 3000 | | D | 9795 | 13926 | 17078 | 22386 | 26805 | | E | 70.26 | 71.33 | 65.44 | 70.36 | 81.78 | Example: Swing clamps 1843 L = 70 mm 1. Admissible clamping force $$\frac{F_{\text{adm}}}{E} = \frac{C}{L} = \frac{210}{70} = 3 \text{ kN}$$ 2. Admissible operating pressure $$\frac{p_{adm}}{=} \frac{D}{L} + E = \frac{9795}{70} + 70.26 = 210 \text{ bar}$$ # Accessories for 184XB0XX • Pneumatic position monitoring (not adjustable) Pneumatic valve #### **Application** A prerequisite for automated processes of workpiece clamping are hydraulic clamping elements whose position can be monitored at any time. The pneumatic position monitorings signal the following conditions by closing two bore holes: - 1. Piston extended, clamping arm in off-position. - 2. Piston in clamping area, clamping arm in clamping position. By the pressure increase in the pneumatic line an electro-pneumatic pressure switch or a differential pressure switch can be actuated. The electrical switching devices are integrated in the electric control so that on the clamping fixture no electricity is required. #### **Description** The pneumatic position monitoring consists of the stainless control housing with fit signal sleeve, to be connected to the switch rod of the swing clamp by means of the delivered screw. Four fixing screws are included in our delivery. #### Pneumatic port #### **Drilled channels** The swing clamp with the mounted position monitoring is inserted into the location hole and is immediately ready for use with the mounted O-rings. #### Hose connection Remove the plugs M5 and screw-in connecting nipple M5 (accessory) Sealing to the flange area is made by the two O-rings. #### **Technical data** | Port | | O-ring or
thread M5 | |-----------------------------|---------|------------------------| | Nominal diameter | [mm] | 2 | | Max. air pressure | [bar] | 10 | | Range of operating pressure | [bar] | 35 | | Differential pressure*) at | | | | 3 bar system pressure | [bar] | min. 1.5 | | 5 bar system pressure | [bar] | min. 3.5 | | Air flow rate **) | [l/min] | 1020 | - *) Required pressure drop if one or several position monitorings are not operated. - **) For measuring the air flow rate appropriate devices are available. Please contact us. #### **Function chart** #### Monitoring by pneumatic pressure switch For the evaluation of the pneumatic pressure built-up standard pneumatic pressure switches can be used. It is possible to monitor with one pressure switch up to 8 position monitorings connected in series (see circuit diagram). It has to be considered that process-safe functioning of pneumatic position monitorings is only guaranteed with throttled air and system pressure. The nominal values are indicated below technical characteristics. ## Part no. | Swing cl | amps | 1843B0XX | 1844B0XX | 1845B0XX | 1846B0XX | 1847B0XX | | | | |----------|--------------------------|------------|------------|------------|------------|------------|--|--|--| | L | [mm] | 129 | 136 | 172 | 190 | 200 | | | | | L1 | [mm] | 50 | 50 | 73 | 73 | 73 | | | | | Swing a | Swing angle (see page 2) | | | | | | | | | | 0 or 90° | | 0353913 | 0353913 | 0353914 | 0353916 | 0353956 | | | | | 15 to 7 | 5° = XX | 03539130XX | 03539130XX | 03539140XX | 03539160XX | 03539560XX | | | | | (graduat | ion of 5°) | | | | | | | | | #### Pneumatic valve Spare part for versions C, H, P and Q Switching range 2 – 9 mm Switching range 2 – 10 mm Max. operating pressure Max. tightening torque Function charts see page 2. Pneumatic port # Accessory for 184XBOXX • Electrical position monitoring (adjustable) Important notes • Wiper system • Throttling of flow rate #### **Application** Electrical position monitorings signal the following conditions due to damping of two inductive proximity switches: - Piston extended, clamping arm in off-position. - 2. Piston in clamping area, clamping arm in clamping position. - Piston in final position, no workpiece inserted. *) - *) If this function is not desired, e.g. in setting mode, the proximity switch can be adjusted so that the switch is still damped at the stroke end (see function chart). #### **Description** The electrical position monitoring consists of the housing with two adjustable inductive proximity switches and one switching cam fixed at the switch rod of the swing clamp. The fixing screws are included in our delivery. The housing can also be mounted turned by 180°. The radial distance of the proximity switches to the switching cam should be 0.5 mm. It is secured by means of a set screw M4. After untightening of the locking screw M4 the proximity switches can be axially displaced. #### Please note: Careful design is required. According to the corresponding application conditions, safety measures have to be planned and checked later on. Inductive position monitorings are not suitable for the use in coolant and swarf areas. #### Technical data | Operating voltage | 1030 VDC | |----------------------------------|------------------| | Max. residual ripple | 15 % | | Max. constant current | 200 mA | | Switching function | interlock | | Output | PNP | | Material of housing | stainless steel | | Thread | M8x1 | | Code class | IP 67 | | Ambient temperature | -25+70 °C | | LED function display | yes | | Protected against short circuits | yes | | Type of connection | right angle plug | | Length of cable | 5 m | #### **Function chart** #### Part no. | Swing clamps | | 1843B0XX | 1844B0XX | 1845B0XX | 1846B0XX | 1847B0XX | |------------------|---------|----------|----------|----------|----------|----------| | L | [mm] | 131 | 138 | 172 | 190 | 200 | | L1 | [mm] | 52 | 52 | 73 | 73 | 73 | | With switch and | plug | 0353905 | 0353905 | 0353915 | 0353915 | 0353915 | | Without switch a | nd plug | 0353906 | 0353906 | 0353917 | 0353917 | 0353917 | #### Important notes Swing clamps must only be used for clamping of workpieces in industrial applications and may only be operated with hydraulic oil. They can generate very high forces. The workpiece, the fixture or the machine must be in the position to compensate these forces. In the effective area of piston rod and clamping arm, there is the danger of crushing. The manufacturer of the fixture or the machine is obliged to provide effective protection devices. The swing clamp has no overload protection device. When mounting the clamping arm, the clamping arm or the hexagon socket in the piston have to be backed up for tightening and untightening the fixing nut. During loading and unloading of the fixture and during clamping a collision with the clamping arm has to be avoided. Remedy: Mount position adaptor. Operating conditions, tolerances and other data see data sheet A 0.100. # Wiper system The standard FKM wiper has a high chemical resistance against most cooling and cutting fluids The optional metallic wiper protects the FKM wiper against mechanical damage due to big or hot swarf. It consists of a radially floating wiping disk and a retaining disk. The metallic wiper can be delivered already mounted ("M") or as an accessory for retrofitting (see page 4). #### Attention! The metallic wiper is not suitable for dry machining or minimum quantity lubrication. Also in applications with very little grinding swarf, the standard FKM wiper has a better protection effect. If there is any danger that small particles stick to the piston rod, the metallic wiper disk can also be replaced by a hard plastic disk. #### Throttling of the flow rate A flow rate throttling always has to be effected in the supply line to the swing clamp. This avoids a pressure intensification and thereby pressures exceeding 350 bar.