Threaded-Body Work Supports with metallic wiper edge, shaft length 20 - 100 mm single and double acting, max. operating pressure 70 bar #### **Advantages** - Load force up to 3 kN at 70 bar - Side load up to 0.3 kN admissible - Space-saving threaded-body version - Support in recesses and cavities - Shaft lengths up to 100 mm available - High process safety by double-acting function - Workpiece contact by spring force - Metallic wiper edge - Protected FKM wiper - Inner parts protected against corrosion - Venting of the spring area - Connection of positive air pressure protection possible - Installed orifices for flow rate limitation - Mounting position: any ## **Application** Hydraulic work supports are used to provide a self-adjusting rest for workpieces and avoid their vibration and deflection under machining loads. This series offers high support forces already at 70 bar and can directly be connected to the low-pressure hydraulics of the machine tool. The selectable extension with a shaft diameter of only 16 mm enables the support of surfaces in recesses and cavities that otherwise would be inaccessible. In case of the double-acting version, the return stroke of the support plunger is effected in a precisely defined time, that is above all advantageous in cycle-dependent installations. # Description The support plunger is hydraulically extended and retracted by means of a small single or double-acting cylinder. Contact to the workpiece is made by spring force. The pressure spring can be easily exchanged. The support plunger is additionally guided in the area of the shaft diameter and can therefore absorb side loads up to 300 N. #### Important notes The admissible load force is valid for static or dynamic load. The support plunger must not be stressed by tensile load. Machining forces can generate vibrations, whose amplitude exceeds far an average value, and this can cause yielding of the support plunger. Remedy: increase the safety factor or the number of work supports. Work supports must only be operated with a sealed contact bolt. In dry machining applications, with minimum quantity lubrication or in case of accumulation of very small swarf, there can be a swarf holdup in the area of the metallic wiper edge. Remedy: regular cleaning. Operating conditions, tolerances and other data see data sheet A 0.100. #### **Function** The support plunger is retracted in off-position. When pressurised, the piston of the single or double-acting cylinder extends against an internal stop and the support plunger contacts the already clamped workpiece with spring force. With continuing pressure increase, the conical hydraulic piston moves downwards. The support plunger will be radially locked by the slotted locking bush using a low-friction spherical shell and can then absorb load forces in axis direction. For unclamping, hydraulic pressure will be released. The conical hydraulic piston is pushed upwards by spring force, whereby the locking of the support plunger disengages. The single-acting piston retracts the support plunger with spring force to its off-position. This takes place quicker with the double-acting version. #### Venting port To guarantee safe functioning, a vent port is imperative. # Positive air pressure connection By connecting a slight overpressure of max. 0.2 bar, the venting system is effectively protected against the penetration of liquids. #### Combination with clamping elements In the above example the machining force is to be added to the clamping force of the compact clamp: clamping force - + max. machining force - = minimum support force x safety factor Rough calculation from practice: # Required support force ≥ 2 x clamping force To increase the safety, a support force as high as possible should be achieved by - using a larger work support - utilising the max. operating pressure - using a smaller clamping element or reducing the clamping pressure #### Admissible loads Max. load force up to 3 kN #### Example Load of the support plunger by side loads (see diagram on page 3) #### Single acting #### Part no. 1947 100 S106 XX0 #### double acting # Part no. 1947110S106XX0 # Dimensions for self-made contact bolts #### **Location holes** **Detail B** # Admissible load F as a function of the operating pressure p #### Elastic deformation with load force F and operating pressure 70 bar for shaft lengths 20 – 100 mm ### Example # Work support 1947 110S 106 080 Operating pressure p = 70 barLoad force F = 2 kNShaft length SL = 80 mm As per diagram: Elastic deformation approx. 30 µm # Articles and prices on request #### Technical data | Adm. load force (70 bar) | | | [kN] | 3 | |--|----------------------|---------------------------------------|--------------------|-----------------------------| | Load force F at p (bar) | | | [kN] | $0.053 \times p - 0.68$ | | Support plunger Ød | | | [mm] | 10 | | Stroke | | | [mm] | 6.5 | | Oil volume | extending | single acting | [cm³] | 0.6 | | | extending | double acting | [cm³] | 0.7 | | | retracting | double acting | [cm ³] | 0.07 | | Recommended minimum pressure | | | [bar] | 25 | | Max. pressure in return line single acting | | | [bar] | 1 | | | | double acting | [bar] | 2.5 | | Spring force min./max. | | | [N] | 3.7/9.5 | | Elastic deforma | | | [µm/kN] | (SL + 31) + 5.33 | | Load force F at | t 70 bar | | · · · · · | 11.7 | | Operating temperature | | | [°C] | 070 | | Tightening torque | | | [Nm] | 32 | | SL (available shaft lengths) | | | [mm] | 20 30 40 50 60 70 80 90 100 | | L1 | , | | [mm] | SL+ 66 | | L2 | | | [mm] | SL + 100 | | а | | | [mm] | SL + 55.7 | | b | | | [mm] | SL + 64.4 | | С | | | [mm] | SL + 57.3 | | Single acting | 1 | | | Part no. | | Shaft lengths | | | [mm] | 1947100S106020 | | Shaft lengths | | | [mm] | 1947100S106030 | | Shaft lengths 40 | | | [mm] | 1947100S106040 | | Shaft lengths 50 | | | [mm] | 1947100S106050 | | Weight, approx | x. | | [kg] | 0.27 up to 0.32 | | Double acting | a | | | Part no. | | Shaft lengths | | | [mm] | 1947110S106020 | | Shaft lengths 30 | | | [mm] | 1947110S106030 | | Shaft lengths 40 | | | [mm] | 1947110S106040 | | Shaft lengths 50 | | | [mm] | 1947110S106050 | | Shaft lengths 60 | | | [mm] | 1947110S106060 | | Shaft lengths 70 | | | [mm] | 1947110S106070 | | Shaft lengths 80 | | | [mm] | 1947110S106080 | | Shaft lengths 90 | | | [mm] | 1947110S106090 | | Shaft lengths 100 | | | [mm] | 1947110S106100 | | Weight, approx | X. | | [kg] | 0.32 up to 0.37 | | Spare parts | | | | Part no. | | O-ring 1 10.82 x 1.78 (single acting) | | | | 3001 013 | | O-ring 2 21.95 x 1.78 (single acting) | | | | 3002 170 | | | nal seals (double ac | | | 0132 927 | | Joan Mil, OMOTH | .s. sould (double de | · · · · · · · · · · · · · · · · · · · | | 0102 327 | Article available on request On request, we will check whether the article is still available. #### Elastic bending f at the admissible side load of 0.3 kN and an operating pressure of 70 bar as a function of the shaft length SL Adm. load force Fadm at an operating pressure of 70 bar as a function of lever length L and the shaft length SL Fadm. #### Example #### Work support 1947 110S 106 040 Operating pressure p = 70 bar Lever length L = 15 mm Shaft length SL = 40 mm As per diagram: Adm. load 1 kN Up to which lever length can the work support absorb the max. side load of 3 kN? As per diagram: max. lever length 5 mm Römheld GmbH 3