

The HC6D miniBOOSTER

HC6D versions: 9 different intensification factors

 P_{in} : 20 – 200 bar (inlet pressure)

P_H: 800 bar maximum (outlet pressure)

 $\mathbf{P}_{\text{return}}$: As low as possible (Return pressure to tank)

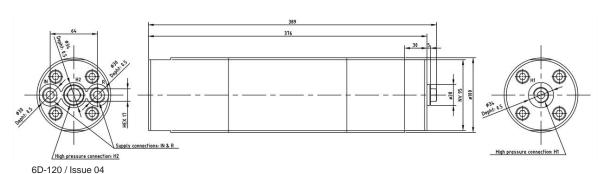
Intensification ratios: $P_H = (P_{IN} - P_{Return}) i$ (Intensification)

Mounting: Inline tube

Accessories: Pilot operated dump valve available

A model = no dump valve

B model = with dump valve
G model = direct proportionally controlled


Description

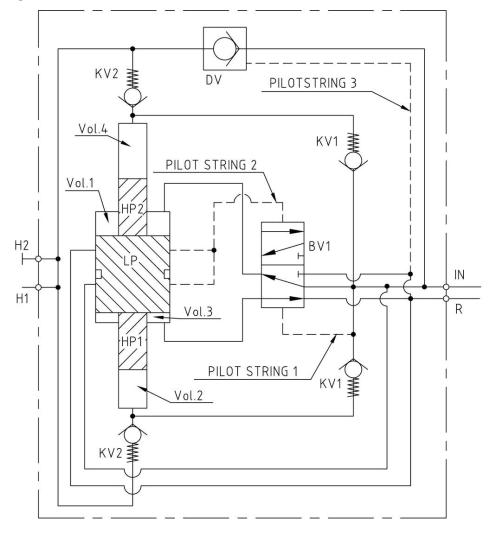
The HC6D is a high flow dual acting unit which is capable of up to 56.0 l/ min flow on the high pressure end. Like other miniBOOSTER models, the HC6D raises supplied pressure to a higher outlet pressure and automatically compensates for consumption of oil to maintain the high pressure. Adjustment of the outlet pressure is carried out by varying the supplied pressure. Relative to its flow capability, the HC6D is a compact unit weighting 20 kg.

Flow Rates

Intensification factor i	Max. outlet flow I/ min	Max. inlet flow I/ min
1.2	56.0	70.0
1.5	48.0	70.0
2.0	41.0	70.0
2.5	34.0	70.0
3.3	27.5	70.0
4.0	22.5	70.0
4.9	17.5	70.0
6.3	13.7	70.0
8.2	11.2	70.0

Dimensions

Sales partner


Functions

The basic operation is illustrated in the function diagram. Oil is fed through the directional valve CV to the IN port, flowing freely through the check valves 2x KV1, 2x KV2 and DV to the high pressure side H. In this condition maximum flow through the booster is achieved giving a fast forward function

When pump pressure is reached on the high pressure side H, valves KV1, KV2 and DV will close. The end pressure will be achieved by the oscillating pump units OP1 and OP2 by turns. The unit will automatically stall when end pressure on high pressure side H is reached. If there is a pressure drop on the high pressure side due to consumption or leakage, the OP1 and OP2 units will automatically operate to maintain the end pressure. It is possible to change the high pressure connection H to the opposite end of the booster.

Function Diagram

0-121

(+44 (0)1204 699 959

enquiries@hyquip.co.uk www.hyquip.co.uk

Sales partner

Connection types

Connection	IN/R	Н
1	1/2" BSP	1/2" BSP

Max. tightening torque BSP

	IN/R	Н
	1/2" BSP	1/2" BSP
with steel washer	13.0 da/ Nm	13.0 da/ Nm
with aluminium washer	7.0 da/ Nm	-
with cutting edge	13.0 da/ Nm	13.0 da/ Nm

Fluids and materials

Please see General Specifications

Ordering a HC6D

Ordering example of a HC6D with i = 4.0, DV incorporated and BSP connections: HC6D - 4.0 - B - 1

Model	Intensification, i	Dump Valve	Connections
HC6D	your selection	your selection	your selection
	see flow rate table	A = (no) / A model	1
		B = (yes) / B model	
		G = (proportional) / G model	

