## DAG INTERNATIONAL



## **Inline Filter RFL Cast** Version up to 1300 l/min, up to 40 bar



#### 1. TECHNICAL **SPECIFICATIONS** 1.1 FILTER HOUSING

#### Construction

The filter housings are designed in accordance with international regulations. They consist of a two-piece filter housing with a bolt-on cover plate.

Standard equipment:

- Connections for venting and draining
- Connection for a clogging indicator

1.2 FILTER ELEMENTS Hydac filter elements are validated and their quality is constantly monitored according to the following standards:

☐ ISO 2941

ISO 2942

ISO 2943

ISO 3724

□ ISO 3968

☐ ISO 11170

□ ISO 16889

#### Contamination retention capacities in g Betamicron® (BN4HC)

|       |            | Dotairiioi | OH® (DI | <del></del> |       |
|-------|------------|------------|---------|-------------|-------|
|       | Elements   |            | 5 µm    | 10 µm 2     | 20 µm |
| 66x 1 | x0660 R 87 | .1 96.5    |         | 116.1       | 131.3 |
| 85x 1 | x0850 R    | 112.1      | 124.2   | 149.5 10    | 69.1  |
| 95x 1 | x0950 R 13 | 0.0 144.1  | 173.3   |             | 196.1 |
| 130x  | 1x1300 R   | 181.0      | 200.7   | 241.4       | 273.1 |
| 132x  | 1x2600 R 3 | 69 4 409   | 4 492 5 | 557.2       |       |

Filter elements are available with the following pressure stability

20 bar Bæltænsicron® (BN4HC): Paper (P/HC): 10 bar Wire mesh (W/HC): 20 bar Stainless steel fibre (V): 30 bar

Betamicron<sub>®</sub>/Aquamicron<sub>®</sub>

(BN4AM): 10 bar Aquamicron® (AM): 10 bar

These filters are available from our Process **Technology Department:** 

HYDAC PROCESS TECHNOLOGY GMBH Industriegebiet Grube König Am Wrangelflöz 1

D-66583 Neunkirchen Tel.: +49 (0)6821 - 86 90-0 Fax: +49 (0)6821 - 86 90-200 Email: prozess-technik@hydac.com

#### 1.3 FILTER SPECIFICATIONS

| Nominal pressure                           | 25 bar<br>40 bar (RFL 662 to 1322 to AD)                                                                                                         |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Temperature range                          | -10 °C to +100 °C                                                                                                                                |
| Material of filter housing and cover plate | EN-GJS-400-15 : RFL 661 to 1321<br>GP 240 GH+N : RFL 662 to 1322<br>1.4581/4571 : RFL 853*<br>On RFL 1321 and 1322 the extension is<br>in steel! |
| Type of clogging indicator                 | VM (differential pressure measurement up to 210 bar operating pressure)                                                                          |
| Pressure setting of clogging indicator     | 2 bar (others on request)                                                                                                                        |
| Bypass cracking pressure                   | 3 bar (others on request)                                                                                                                        |

#### 1.4 SEALS

NBR (= Perbunan)

#### 1.5 MOUNTING

As inline filter

#### 1.6 SPECIAL MODELS AND **ACCESSORIES**

- Inlet and outlet positioned one above the other
- ☐ Counter flanges as welding or blank flanges

#### 1.7 SPARE PARTS

See Original Spare Parts List

#### 1.8 CERTIFICATES AND APPROVALS

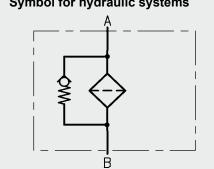
Material code (final digit of filter size) - 1: These filters can be supplied with manufacturer's certificates O and M to

DIN 55350, Part 18. Test certificates 3.1 to DIN EN 10204 and approval certificates (Type Approval) for

different approval authorities. Areas of application, amongst others: lubrication.

Material code (final digit of filter size) - 2: These filters are designed according to API 614, which contains guidelines for the design and designation of basic types of oil supply systems for bearings and shaft seals of larger machines.

Material code (final digit of filter size) - 3: Filters for use in separation technology with low viscosity, high viscosity and aggressive fluids as well as gaseous media.\*


#### 1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

- Hydraulic oils H to HLPD DIN 51524
- ☐ Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- ☐ Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Non-flam operating fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) on

#### 1.10 IMPORTANT INFORMATION

- Filter housing must be earthed
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector
- ☐ Filters must be flexibly mounted and not fixed rigidly to the floor or used as a pipe support.

#### Symbol for hydraulic systems



E 7.118.1/02.08

MODEL CODE (also order example)

2.1 COMPLETE FILTER

Filter type

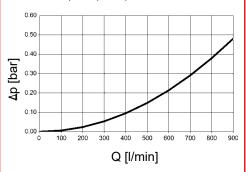
RFL BN/HC 851 D N 10 D 1 . X /-L24

#### 3. FILTER CALCULATION / SIZING

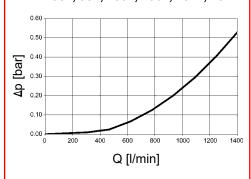
The total pressure drop of a filter at a certain flow rate Q is the sum of the housing  $\Delta p$  and element  $\Delta p$  and is calculated as follows:

 $\Delta$  ptotal =  $\Delta$ phousing +  $\Delta$ pelement

 $\begin{array}{l} \Delta p_{\text{housing}} = \text{(see point 3.1)} \\ \Delta p = Q & \underline{SK^* \cdot \text{viscosity}_{\text{element}}} \end{array}$ 1000 30 (\*see point 3.2)


For ease of calculation, our Filter Sizing Program is available on request free of charge.

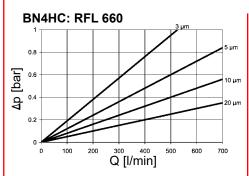
NEW: Sizing online at www.hydac.com

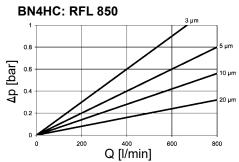

#### 3.1 Ap-Q HOUSING GRAPHS BASED **ON ISO 3968**

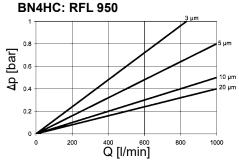
The housing graphs apply to mineral oil with a density of 0.86 kg/dm<sub>3</sub> and a kinematic viscosity of 30 mm<sub>2</sub>/s. In this case, the differential pressure changes proportionally to the density.

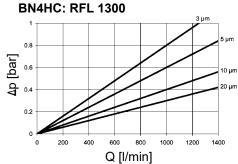
#### RFL 661, 662, 851, 853

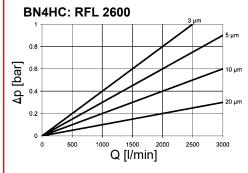



#### RFL 951, 952, 1301, 1302, 1321, 1322



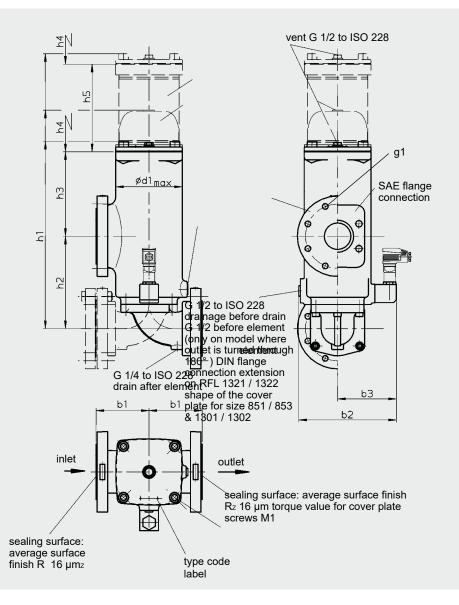


#### 3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS


The gradient coefficients in mbar/(l/min) apply to mineral oils with a kinematic viscosity of 30 mm<sub>2</sub>/s. The pressure drop changes proportionally to the change in viscosity.


| RFL    | V    | W/HC |       |       |       |
|--------|------|------|-------|-------|-------|
|        | 3 µm | 5 μm | 10 µm | 20 µm | -     |
| 660    | 1.0  | 0.8  | 0.6   | 0.4   | 0.081 |
| 850    | 0.8  | 0.6  | 0.4   | 0.3   | 0.063 |
| 950    | 0.7  | 0.6  | 0.4   | 0.2   | 0.054 |
| 1300 ( | ).5  | 0.4  | 0.3   | 0.2   | 0.045 |
| 2600   | 0.3  | 0.2  | 0.1   | 0.1   | 0.022 |












# E 7.118.1/02.08

### 4. DIMENSIONS



| RFL  | Flange<br>port           | b1  | b2         | b3  | d1  | h1   | h2  | h3  | h4         | h5<br>(Nm) | M1         | g1         | Weight including element [kg] | Volume of pressure chamber [I] |
|------|--------------------------|-----|------------|-----|-----|------|-----|-----|------------|------------|------------|------------|-------------------------------|--------------------------------|
| 661  | SAE DN 80<br>DIN DN 80   | 133 | 192<br>184 | 239 | 172 | 465  | 230 | 210 | 350        | -          | 150        | M16<br>M16 | 36                            | 8.2                            |
| 662  | SAE DN 80<br>DIN DN 80   | 133 | 192<br>184 | 239 | 172 | 465  | 230 | 210 | 350        | -          | 150        | M16<br>M16 | 42                            | 8.2                            |
| 851  | SAE DN 80<br>DIN DN 80   | 133 | 192<br>184 | 239 | 172 | 552  | 230 | 210 | 420<br>420 | -          | 150<br>150 | M16<br>M16 | 38.5                          | 9.5                            |
| 853  | SAE DN 80<br>DIN DN 80   | 133 | 192<br>184 | 239 | 172 | 552  | 230 | 210 |            | -          |            | M16<br>M16 | 45                            | 9.5                            |
| 951  | SAE DN 100<br>DIN DN 100 | 143 | 223<br>215 | 267 | 220 | 523  | 250 | 238 | 380        |            | 250        | M16<br>M20 | 54                            | 13                             |
| 952  | SAE DN 100<br>DIN DN 100 | 143 | 223<br>215 | 267 | 220 | 523  | 250 | 238 | 380        | -          | 250        | M16<br>M20 | 67.5                          | 13                             |
| 1301 | SAE DN 100<br>DIN DN 100 | 143 | 223<br>215 | 267 | 220 | 630  | 250 | 238 | 500        | -          | 250        | M16<br>M20 | 55.5                          | 16                             |
| 1302 | SAE DN 100<br>DIN DN 100 | 143 | 223<br>215 | 267 | 220 | 630  | 250 | 238 | 500        | -          | 250        | M16<br>M20 | 75.5                          | 16                             |
| 1321 | SAE DN 100<br>DIN DN 100 | 143 | 223<br>215 | 267 | 220 | 1084 | 250 | 238 | 940        | 561        | 250        | M16<br>M20 | 82                            | 31                             |
| 1322 | SAE DN 100<br>DIN DN 100 | 143 | 223<br>215 | 267 | 220 | 1084 | 250 | 238 | 940        | 561        | 250        | M16<br>M20 | 96                            | 31                             |

### **NOTE**

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department. Subject to technical modifications.

