DAC INTERNATIONAL

Inline Filter LF Inline Filter LFF for Reversible Oil Flow up

to 500 l/min, up to 100 bar Leleller

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING

Construction The filter housings are designed in accordance with international regulations. They consist of a filter head and a screw-in filter bowl. LFF filters are suitable for flow in both directions. Standard equipment:

- · connection for a clogging indicator in filter head
- · mounting holes in the filter head
- · drain screw with pressure relief (LF 330 and above)

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724
- ISO 3968 • ISO 11170
- Contamination retention capacities ISO 16889 in g

Betamicron® (BN4HC) <u>LF/LFF 3 µm</u>									
	5 µm	5 μm 10 μm							
30 4.6	5.1	5.4 5	.6						
60 6.5 7.3 7.8			8.0						
110 13.8 160	15.5	16.4	16.9						
19.8 240 32.3	22.2 2	3.5 36.3	24.3						
	38.4		39.6						
330 47.2 660	53.1	56.1	57.9						
102.2	114.9	121.5	125.4						

Betamicron⊚ (BH4HC)									
LF/L3FΓειπήδίμβη 20 μm									
30 60	3.0	2.9	3.2 3.	7					
60	4.6 4.5		5.0	<u>5.7</u>					
110 10.1	9.9 10.9 12.	4 160	12.9 12.6 1	3.9 15.9					
240 21 6	21 1 23 2 20	6.5							

33.9 42.5 660 76.8 75.2 82.6 Filter elements are 94.3 available with the following pressure stability values: 20 bar

Betamicron® (BN4HC): Betamicron® (BH4HC): 210 bar Optimicron® Pulse (ON/PS):
Optimicron® Pulse (OH/PS):
Wire mesh (W): 20 bar 210 bar 20 bar Stainless steel fibre (V): 210 bar

1.3 FILTER SPECIFICATIONS

Nominal pressure	100 bar
Fatigue strength	At nominal pressure 10 ₆ cycles from 0 to nominal pressure (For other pressures, see graph at 1.8)
Temperature range	-30 °C to +100 °C (LF/LFF 660: -30 °C to -10 °C: p _{max} = 75 bar)
Material of filter head	Aluminium
Material of filter bowl	Aluminium
Type of clogging indicator	VM (differential pressure measurement up to 210 bar operating pressure)
Pressure setting of the clogging indicator	5 bar (others on request)
Bypass cracking pressure (optional)	6 bar (others on request)

1.4 SEALS

NBR (=Perbunan)

1.5 INSTALLATION

Inline filter with or without reversible oil flow

1.6 SPECIAL MODELS AND **ACCESSORIES**

- Bypass valve built into the head, separate from the main flow
- Oil drain screw up to LF/LFF 240
- · Seals in FPM, EPDM
- · Test and approval certificates

1.7 SPARE PARTS See Original Spare Parts List 1.8 FATIGUE STRENGTH

1.9 CERTIFICATES AND APPROVALS

On request

1.10 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517. API. ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- •Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- •Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (> 50 % water content) on request

1.11 IMPORTANT INFORMATION

- •Filter housings must be earthed.
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector

Symbol for hydraulic systems

LF BN/HC 60 I C 10 D 1 . X /-L24

2. MODEL CODE (also order example)

2.1 COMPLETE FILTER

3. FILTER CALCULATION / SIZING

The total pressure drop of a filter at a certain flow rate Q is the sum of the housing ~p and the element ~p and is calculated as follows:

 $^{\sim}$ p_{total} = $^{\sim}$ p_{housing} + $^{\sim}$ p_{element} ~phousing = (see Point 3.1) p = Q • SK* • viscosity 1000 30_{element} (*see Point 3.2)

For ease of calculation, our Filter Sizing Program is available on request free of charge.

NEW: Sizing online at <u>www.hydac.com</u>

3.1 °p-Q HOUSING CURVES BASED **ON ISO 3968**

The housing curves apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30 mm²/s. In this case, the differential pressure changes proportionally to the density.

LF 60-110

LF 160-240

LF 330-660

LFF ~p-Q housing curves on request!

3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS

The gradient coefficients in mbar/(I/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in

LF/	V				W	ВН4НС	ВН4НС						
LFF	3 µm	5 µm	10 µm	20 µm	-	3 µm	5 µm	10 µm	20 µm				
30	18.4	13.5	7.5	3.6	3.030	91.2	50.7	36.3	19.0				
60	16.0 9.3	5.4 3.3			0.757	58.6 32.	6 18.1		12.2				
110	8.2 3.3 2	2.2 5.6			0.413	25.4	14.9 8.9)	5.6				
160	4.6	3.2	2.3	1.4	0.284	16.8	10.4	5.9	4.4				
240	3.1 1.7 1	1.1 2.5			0.189	10.6	6.8	3.9	2.9				
330	2.2 1.8		1.2	0.8	0.138	7.7 3.3 1	I.O Ø.9	2.8	2.0				
660	1.1 0.9 0).6		0.4	0.069	1.9							

LF/	ON/PS		,		OH/PS	OH/PS						
LFF	3 µm	5 µm	10 µm	20 µm	3 µm	5 µm	10 µm	20 µm				
30	63.90	43.30 11.	30 25.08		87.54	59.32	34.36	15.48				
60	28.90	20.40	14.52	7.90	39.59	27.95	19.89	10.82				
110	14.90	10.70	7.26	3.70	20.41	14.66	9.95	5.07				
160	13.10	8.80	5.52	3.50	17.95	7256 63.36		4.80				
240	8.20	6.10	4.32	2.30	11.23		5.92	3.15				
330	4.86	3.90	3.00	1.70	6.66	5.34	4.11	2.33				
660	2.25	1.80 1.10	0.80		3.08 2.47		1.51	1.10				

BN4HC: 30

BN4HC: 60

BN4HC: 110

BN4HC: 160

BN4HC: 240

BN4HC: 330

BN4HC: 660

E 7.563.4/04.15

LF / LFF	b1	b2	b3	b4	d1	d2	d3	d4	h1	h2 h	3	h4 S	W t1		t2	Weight including element [kg]	Volume of pressure chamber [l]
30	69	36	45	30	67	52	G½	M5	125.5	31	7	75 24	1 15		8	0.8	0.13
60	90	48	56	32	84	68 G¾		M6	137.5	39 6 3	39	75 2	7	17	9	1.5	0.24
110	90	48	56	32	84	68 95	G1¼	M6	@ 07.0			75 2	7 17		9	1.8	0.42
160	125	65	85	35	116	G3/4		M10	190.5	46	6	95 32	2	21	14	3.7	0.60
240 1	25	65	85	35	116	95	G1¼	M10	250.5	46	6	95 32	2	21	14	4.3	0.80
330 1	5 9	85	115	60	160	130	G1½	M12	252.5	50	6	105	36	23 1	7	8.0	1.50
660 1	5 9	85	115	60	160	127	G1½	M12	417.5	50	6	105	36	23 1	7	11.0	3.00

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.
Subject to technical modifications.