DAC INTERNATIONAL

Inline Filter MFM up to 100 l/min, up to 280 bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING

Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head with screw-in filter bowl. Standard equipment:

- with bypass valve
- Connection for a clogging indicator on the top of the head as standard (4 mounting holes)
- ☐ Filters are supplied phosphate-plated and primed.

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- □ ISO 2941
- □ ISO 2942
- ISO 2943
- ISO 3724
- □ ISO 3968 ☐ ISO 11170
- ISO 16889

Contamination retention capacities in g

	Betamicron® BN4HC			
MFM	3 µm 5 µm	3 µm 5 µm 10 µm		
35 7.2		8.1 8.6	8.8	
55 14	15.8	16.6	17.2 26.5	
75 21.6	24.3 2	24.3 25.7		
95 27.5	30.9	32.7	33.7	

Filter elements are available with the following pressure stability values: Betamicron® (BN4HC): 20 bar

1.3 FILTER SPECIFICATIONS

Nominal pressure	280 bar
Fatigue strength	0280 bar, min. 10 ₇ load cycles 0320 bar, min. 10₅ load cycles
Temperature range	-10 °C to +100 °C (-30 °C to -10 °C: p _{max} = 140 bar)
Material of filter head	EN-GJS-400-15
Material of filter bowl	Steel
Type of clogging indicator	VD (differential pressure indicator up to 420 bar operating pressure)
Pressure setting of clogging indicator	5 bar (others on request)
Bypass cracking pressure	7 bar (others on request)

1.4 SEALS

NBR (= Perbunan)

1.5 MOUNTING

As inline filter

1.6 SPECIAL MODELS AND **ACCESSORIES**

Connection for a clogging indicator on the side of the head (3 mounting holes)

1.7 SPARE PARTS

See Original Spare Parts List

1.8 CERTIFICATES AND APPROVALS

On request

1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS TO ISO 2943**

- Hydraulic oils H to HLPD DIN 51524
- ☐ Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- □ Compressor oils DIN 51506
- ☐ Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Operating fluids with high water content (>50% water content) on request

1.10 IMPORTANT INFORMATION

- Filter housing must be earthed
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector.

Symbol for hydraulic systems

3. FILTER CALCULATION / **SIZING**

The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and element Δp and is calculated as follows:

 $\Delta p_{total} = \Delta p_{housing} + \Delta p_{element}$ $\Delta p_{\text{housing}} = \text{(see point 3.1)}$ $\Delta p = Q \cdot SK^*$ viscosity Element 1000 30 (*see point 3.2)

For ease of calculation, our Filter Sizing Program is available on request free of charge.

NEW: Sizing online at <u>www.hydac.com</u>

3.1 AP-Q HOUSING GRAPHS BASED **ON ISO 3968**

The housing graphs apply to mineral oil with a density of 0.86 kg/dm3 and a kinematic viscosity of 30 mm²/s. In this case, the differential pressure changes proportionally to the density.

MFM - Port M18 x 1.5 / G 1/2

MFM - Port M22 x 1.5 / G 3/4

3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS

The gradient coefficients in mbar/(I/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

MFM					
	3 µm	5 μm	10 µm	20 μm	
35	23.6	19.0	14.8	9.3	
55	13.7	11.0	8.1	4.8	
75	9.3	7.5	5.3	3.1	
95	7.5	6.0	4.1	2.4	

BN4HC: MFM 35

BN4HC: MFM 55

BN4HC: MFM 75

BN4HC: MFM 95

MFM v	Weight incl. nt [kg]	Vol. of pressure chamber [l]
35	3.7	0.24
55	4.2	0.39
75	4.7	0.56
95	5.1	0.69

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department. Subject to technical modifications.