DAC INTERNATIONAL

Low Pressure Filter LPF up to 280 l/min, up to 50 bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING

Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head and a screw-in filter bowl. Standard equipment:

- without bypass valve
- connection for a clogging indicator

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

ISO 2941, ISO 2942, ISO 2943, ISO 3724, ISO 3968, ISO 11170, ISO 16889

Filter elements are available with the following pressure stability values: Optimicron_® (ON): 20 bar Betamicron® (BH4HC): 210 bar Wire mesh (W/HC)*: 30 bar

*only for LPF 160, 240, 260, 280

NOTICE:

Only filter elements with Optimicron® and .../HC material can be used in LPF filters!

1.3 FILTER SPECIFICATIONS

Nominal pressure	LPF 35, 55: 40 bar LPF 160, 240, 260, 280: 50 bar at
Fatigue strength	nominal pressure 106 load cycles from 0 to nominal pressure
	LPF 35 and 55: 107 load cycles at 40 bar
Temperature range	-30 °C to +100 °C
Material of filter head	Aluminium
Material of filter bowl	Aluminium
Type of indicator	VM (Diff. pressure indicator up to 210 bar operating pressure) VL (Diff. pressure indicator up to 40 bar operating pressure - only BF indicator)
Pressure setting of clogging indicator	5 bar (others on request)
Bypass cracking pressure (optional)	6 bar (LPF 160 - 280) 7 bar (LPF 35 - 55) others on request

1.4 SEALS

Perbunan (=NBR)

1.5 INSTALLATION Inline filter

1.6 SPECIAL MODELS AND **ACCESSORIES**

- Seals in FPM, EPDM
- With bypass valve (1, 3, 6 or 7 bar)
- Without port for clogging indicator (LPF 160, 240, 260, 280)

1.7 SPARE PARTS

See Original Spare Parts List

1.8 CERTIFICATES AND APPROVALS

On request

1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

- Hvdraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFC and HFD
- Operating fluids with high water content (>50% water content) on request

Symbol for hydraulic systems

3. FILTER CALCULATION / **SIZING**

The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

$$\begin{array}{l} \Delta p_{total} = \Delta p_{housing} + \Delta p_{element} \\ \Delta p_{housing} = (see\ Point\ 3.1) \\ \Delta p = Q \bullet \underline{SK^*} \bullet \underline{viscosity}_{element} 1000 \ \ 30 \\ \hline (*see\ Point\ 3.2) \end{array}$$

For ease of calculation, our Filter Sizing Program is available on request free of charge.

NEW: Sizing online at www.hydac.com

3.1 Ap-Q HOUSING CURVES BASED **ON ISO 3968**

The housing curves apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30 mm²/s. In this case, the differential pressure changes proportionally to the density.

LPF 35, 55

LPF 160, 240, 260, 280

3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS

The gradient coefficients in mbar/(I/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

LPF	ON					
	1 µm	3 µm	5 µm	10 µm	15 µm	20 µm
35	50.2	21.3	17.1	13.7	10.0	7.44
55	26.0	12.3	9.90	7.90	5.17	3.84
160	18.5	11.0	7.70	4.10	3.71	3.18
240	11.5	6.90	5.34	3.19	2.44	2.10
260	8.18	4.96	3.87	2.31	1.83	1.44
280	5.54	3.37	2.74	1.49	1.36	1.17

LPF	ВН4НС				W/HC
	3 µm	5 μm	10 µm	20 µm	_
35	47.8	28.1	16.8	10.5	_
55	24.2	14.2	8.5	5.3	_
160	16.8	10.4	5.9	4.4	0.284
240	10.6	6.8	3.9	2.9	0.189
260	8.1	4.8	3.3	1.9	0.131
280	5.7	3.4	1.8	1.6	0.089

LPF	Weight incl. element [kg]	Vol. of pressure chamber [I]
35	1.00	0.19
55	1.15	0.33
160	2.00	0.60
240	2.31	0.90
260	2.76	1.30
280	3.28	1.70
	•	

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.