INTERNATIONAL # Change-Over Inline Filter FLND to DIN 24550*, up to 400 l/min, up to 63 bar *Filter and filter elements also available with HYDAC dimensions #### 1. TECHNICAL **SPECIFICATIONS** #### 1.1 FILTER HOUSING Construction The filter housings are designed in accordance with international regulations. They consist of a filter head with integral change-over valve and screw-in filter bowls. Standard equipment: - without bypass valve - Connection for a clogging indicator - ☐ with drain screw (FLND 160 to 400) #### **1.2 FILTER ELEMENTS** Hydac filter elements are validated and their quality is constantly monitored according to the following standards: □ ISO 2941, ISO 2942, ISO 2943, ISO 3724, ISO 3968, ISO 11170, ISO 16889 #### Contamination retention capacities in q | | Betamicron⊚ (BN4HC) | | | | | | |------|---------------------|------------------|---------|--------|--|--| | FLND | 3 µm | 5 μm 10 μm 20 μm | | | | | | 60 | 6.5 | | 7.3 7.8 | 8.0 | | | | 110 | 13.8 | 15.5 | 16.4 | 16.9 | | | | 140 | 18.1 20 | .3 | 21.5 | 22.2 | | | | | Betamio | cron® | (BN4HC) | | | | | FLND | 3 µm | 6 µm | 10 µm | 25 µm | | | | 40 | 5.2 5.6 | 3 | 6.3 | 7.0 | | | | 63 | 9.2 | 9.9 | 11.1 | 12.8 | | | | 100 | 15.4 | 16.5 1 | 8.6 | 20.6 | | | | 160 | 27.5 | 29.3 3 | 3.1 | 36.7 | | | | 250 | 46.0 | 49.0 | 55.2 | 61.3 | | | | 400 | 76.2 81 | .3 91.4 | | 101.5 | | | | | Betamio | cron® (BH | I4HC) | | | | | FLND | 3 µm | 5 µm | 10 µm | 20 µm | | | | 60 | 4.6 | 4.5 | 5.0 5. | 7 12.4 | | | | 110 | 10.1 | 9.9 10.9 | | | | | | 140 | 13.3 | 13.0 | 14.3 | 16.3 | | | | | Bet | tamicron | (BH4HC) | | | | | FLND | 3 µm | 6 µm | 10 µm | Biodeg | | | | 40 | 4.1 | 4.4 | 5.2 | 24568 | | | Filter elements are available with the following pressure stability 7.9 13.2 23.9 92 15.5 27.8 48.6 81.0 7.3 12.2 21.8 38.1 63 100 160 250 400 Beltænicron® (BN4HC): 20 bar Betamicron® (BH4HC): 210 bar Wire mesh(W/HC, W): 20 bar #### 1.3 FILTER SPECIFICATIONS | Nominal pressure | 25 bar (FLND 160 to 400)
63 bar (FLND 40 to 140) at nominal | |--|--| | Fatigue strength | pressure 106 load cycles from 0 to | | | nominal pressure | | Temperature range | -10 °C to +100 °C | | Material of filter head | Aluminium | | Material of filter bowl | Aluminium (FLND 100 and 140: steel) | | Type of clogging indicator | VM (differential pressure indicator up to | | ., 33 °C | 210 bar operating pressure) | | Pressure setting of clogging indicator | 5 bar (others on request) | | Bypass cracking pressure (optional) | 3 bar, 7 bar (others on request) | #### 1.4 SEALS NBR (= Perbunan) #### 1.5 MOUNTING As inline filter #### 1.6 SPECIAL MODELS AND **ACCESSORIES** - with bypass valve - ☐ with oil drain plug (FLND 40 to 140 = SO184) - seals in FPM, EPDM #### 1.7 SPARE PARTS See Original Spare Parts List 1.8 **CERTIFICATE'S AND APPROVALS** On #### 1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943** ☐ Hydraulic oils H to HLPD DIN 51524 Lubrication oils DIN 51517. API. ACEA, DIN 51515, ISO 6743 ☐ Compressor oils DIN 51506 1.10 IMPORT Biodegradable operating fluids VDMA25 μm 6.2 24568 HETG, HEES, HEPG 1112 am operating fluids HFA, HFB, 18.9 HFC and HFD 33.8 Operating fluids with high water 59.0 98.3 content (>50% water content) on request - Filter housing must be earthed - ☐ When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector #### Symbol for hydraulic systems **FLND 40 - 140** 2. MODEL CODE (also order example) 2.1 COMPLETE FILTER Filter material of element Filter type FLND FLND BN/HC 250 D D F 10 D 1 . X /-L24 #### 3. FILTER CALCULATION / SIZING The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and element Δp and is calculated as follows: Δ ptotal = Δ phousing + Δ pelement $\Delta p_{\text{housing}} = \text{(see point 3.1)}$ $\Delta p = Q \cdot \underline{SK^* \cdot \text{viscosity}_{\text{element}}}$ 1000 30 (*see point 3.2) For ease of calculation, our Filter Sizing Program is available on request free of charge. NEW: Sizing online at www.hydac.com #### 3.1 Ap-Q HOUSING GRAPHS BASED **ON ISO 3968** The housing graphs apply to mineral oil with a density of 0.86 kg/dm3 and a kinematic viscosity of 30 mm₂/s. In this case, the differential pressure changes proportionally to the density. #### FLND 40, 60, 63, 100, 110, 140 FLND 160, 250, 400 #### 3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS The gradient coefficients in mbar/(I/min) apply to mineral oils with a kinematic viscosity of 30 mm₂/s. The pressure drop changes proportionally to the change in viscosity. | FLND | D BH4HC | | | W/HC - W | DN BH4HC | | | | | |------|---------|-----------|-------|----------|----------|----------|---------|-------|-------| | | 3 µm | 5 µm | 10 µm | 20 µm | _ | 3 µm | 6 µm | 10 µm | 25 µm | | 60 | 58.6 18 | .13122.62 | | | 0.757 | - | - | - | - | | 110 | 25.4 | 14.9 | 8.9 | 5.6 | 0.413 | - | - | - | - | | 140 | 19.9 | 11.3 | 8.1 | 4.3 | 0.324 | - | | | - | | 40 | | | | | 0.966 | 40.4 | 24.8 16 | 5.4 | 10,9 | | 63 | - | - | - | - | 0.540 | 29.0 | 18.2 | 11.7 | 7,6 | | 100 | | - | | - | 0.325 | 19.0 7.7 | 11.7 | | 5,3 | | 160 | - | - | - | - | 0.168 | 8.0 | 5.1 | 3.8 | 2,5 | | 250 | - | - | - | - | 0.101 | 5.4 | 3.4 | 2.8 | 1,9 | | 400 | - | - | - | - | 0.068 | 3.4 | 2.1 | 1.7 | 1,1 | ### **BN4HC: FLND 60** 1.8 1.6 1.4 [bar] 1.2 d 0.8 Q [l/min] **BN4HC: FLND 110** **BN4HC: FLND 140** BN4HC: FLND 40 **BN4HC: FLND 63** **BN4HC: FLND 100** **BN4HC: FLND 160** **BN4HC: FLND 250** | FLND | Weight incl.
element [kg] | Vol. of pressure
chamber [l] | |------|------------------------------|---------------------------------| | 40 | 6.73 | 2x 0.26 | | 60 | 6.83 | 2x 0.25 | | 63 | 7.10 | 2x 0.40 | | 100 | 11.33 | 2x 0.50 | | 110 | 7.32 | 2x 0.40 | | 140 | 11.78 | 2x 0.40 | | 160 | 10.3 | 2x 1.40 | | 250 | 11.6 | 2x 2.00 | | 400 | 13.0 | 2x 3.10 | FLND 400: 527,50FLND 250: 377,50FLND 160: 287,50 ### **NOTE** The information in this brochure relates to the operating conditions and applications described. For applications or operating conditions not described, please contact the relevant technical department. Subject to technical modifications.