DACINTERNATIONAL

Change-Over Inline Filter FMND to DIN 24550*, up to 400 l/min, up

to 250 bar *Filters and filter elements also available in HYDAC dimensions (FMND 40 to 140 only)

1. TECHNICAL SPECIFICATIONS

1.1 FILTER HOUSING Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head with built-in change-over valve and screw-in filter bowls. Standard equipment:

- without bypass valve
- connection for a clogging indicator
- oil drain plug (FMND 160 to 400)

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

 ISO 2941, ISO 2942, ISO 2943, ISO 3724, ISO 3968, ISO 11170, ISO 16889

Filter elements are available with the following pressure stability values: Optimicron® (ON)1): 20 bar Betamicron® (BN4HC) 2): 20 bar Betamicron® (BH4HC): 210 bar Wire mesh (W/HC, W) 3): 20 bar

1) only for FLND 60, 110, 140 2) only for FLND 40, 63, 100, 160, 250, 400 3) only for FLND 40-140

1.3 FILTER SPECIFICATIONS

Nominal pressure	210 bar (FMND 160 to 400) 250 bar (FMND 40 to 140)
Fatigue strength	At nominal pressure 10 ₆ cycles from 0 to nominal pressure
Temperature range	-10 °C to +100 °C
Material of filter head	EN-GJS-400-15
Material of filter bowl	Steel
Type of indicator	VM (Diff. pressure indicator up to 210 bar operating pressure) VD (Diff. pressure indicator up to 420 bar operating pressure)
Pressure setting of the clogging indicator	2.5 bar or 5 bar (others on request)
Bypass cracking pressure (optional)	3.5 bar or 7 bar (others on request)

1.4 SEALS

NBR (=Perbunan)

1.5 INSTALLATION

Inline filter

1.6 SPECIAL MODELS AND **ACCESSORIES**

- With bypass valve
- Oil drain plug (FMND 40 to 140 = SO184)
- Seals in FPM, EPDM
- Reverse flow "RL" for FMND 160 and above

1.7 SPARE PARTS

See Original Spare Parts List

1.8 CERTIFICATES AND APPROVALS

These filters can be supplied with manufacturer's test certificates O and M to DIN 55350, Part 18. Test certificates 3.1 to DIN EN 10204 and approval certificates (Type Approval) for different approval authorities.

1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) on request

* only for FMND 40 - 140

1.10 IMPORTANT INFORMATION

- Filter housings must be earthed.
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector.
- Filters with switching valve are designed to have a permissible leakage depending on the operating medium.

Symbol for hydraulic systems

VA = clogging indicator

2. MODEL CODE (also order example)

2.1 COMPLETE FILTER

Filter type

FMND BN/HC 250 L D F 10 D 1 . X /-L24

3. FILTER CALCULATION / SIZING

The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

 Δ ptotal = Δ phousing + Δ pelement

 $\Delta p_{\text{housing}} = \text{(see Point 3.1)} \Delta p = Q$ • SK* • viscosity 1000 30_{element}

(*see Point 3.2)

For ease of calculation, our Filter Sizing Program is available on request free of charge.

NEW: Sizing online at <u>www.hydac.com</u>

3.1 Ap-Q HOUSING CURVES BASED **ON ISO 3968**

The housing curves apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30 mm²/s. In this case, the differential pressure changes proportionally to the density.

FMND 40, 60, 63, 100, 110, 140

FMND 160, 250, 400

3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS

The gradient coefficients in mbar/(l/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

FLND) D ON						
	1 µm	3 µm	5 µm	10 µm	15 µm	20 µm	
60	53.5	26.0	18.3	12.1	9.78	6.32	
110	25.8	13.4	9.61	6.06	4.63	2.99	
140	19.9	11.5	7.39	4.38	3.54	2.29	

FLND	DN BN4HC						
	3 µm	6 μm	10 μm	25 μm			
40	40.4	24.8	16.4	10.9			
63	29.0	18.2	11.7	7.6			
100 160	19.0	11.7	7.7	5.3			
160	8.0	5.1	3.8	2.5			
250 400	5.4	3.4	2.8	1.9			
400	3.4	2.1	1.7	1.1			

FLND	D BH4HC				W/HC-W	C-W DN BH4HC			
	3 μm 5 μm 10 μm 20 μm 58.6 32.6			_	3 µm	6 µm	10 µm	25 µm	
60			18.1	12.2	0.757	-	-	-	-
110	25.4	14.9	8.9 5.6		0.413				-
140	19.9	11.3	8.1	4.3	0.324	-	-	-	-
40	-	-	-	-	0.966	40.4	24.8	16.4	10.9
63				-	0.540	29.0 18	3.2 11.7		7.6
100	-	-	-	-	0.325 19.	0	11.7	7.7	5.3
160	-	-	-	-	0.168	8.0	5.1	3.8	2.5
250	-	-	-	-	0.101	5.4	3.4	2.8	1.9
400	-	-	-	-	0.068	3.4	2.1	1.7	1.1

NOTE

The information in this brochure relates to the operating conditions and applications described

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.