

2.4 HEAVY DUTY SERIES

CONTENTS

PPV102

		_		 Co		
()	ra	Δ r	·ın	1 - 6	10	

- 2.4.1 Heavy Duty Series
- 2.4.2 Heavy Duty Series compensator
- 2.4.3 Standard gear pump models

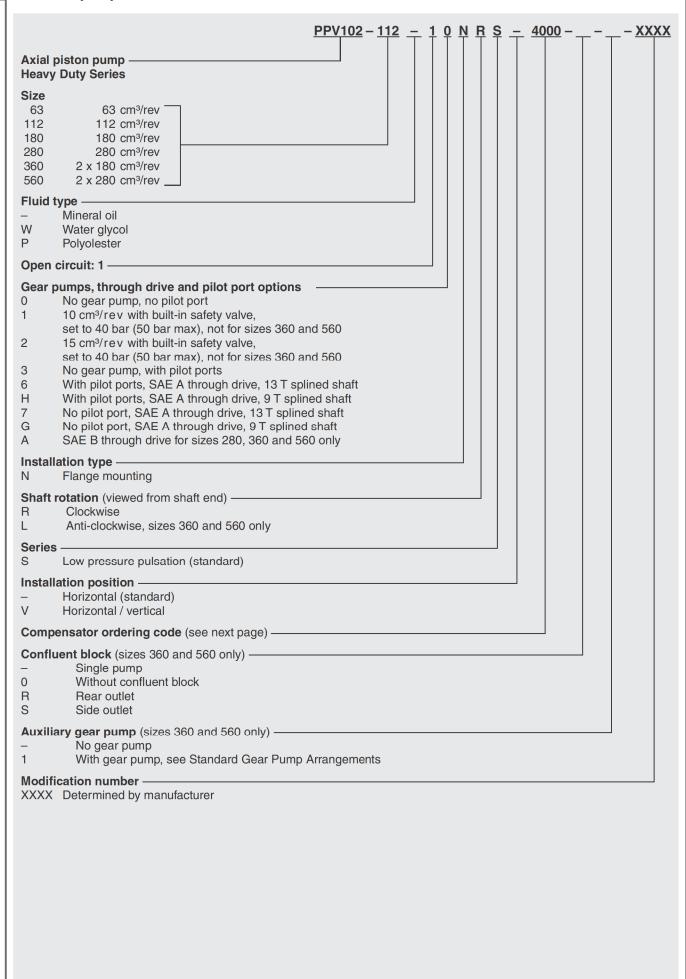
Technical Information

- 2.4.4 Specifications
- 2.4.5 Hydraulic fluids
- 2.4.6 Viscosity range
- 2.4.7 Temperature range
- 2.4.8 Fire-resistant fluids
- 2.4.9 Seals
- 2.4.10 Filtration
- 2.4.11 Adjustments
- 2.4.12 Installation notes

Control Options

- 2.4.13 Variable delivery positive displacement control
- 2.4.14 Variable delivery electrical displacement control
- 2.4.15 Power control
- 2.4.16 Power and positive displacement control
- 2.4.17 Power and electrical displacement control
- 2.4.18 Pressure compensation control
- 2.4.19 Pressure compensation and load sensing control
- 2.4.20 Power and pressure compensation
- 2.4.21 Power / pressure compensation and positive displacement control
- 2.4.22 Power / pressure compensation and electrical displacement control
- 2.4.23 Power, pressure compensation and load sensing control

Performance Data


- 2.4.24 PPV102-63
- 2.4.25 PPV102-112
- 2.4.26 PPV102-180 / -360
- 2.4.27 PPV102-280 / -560

Dimensions

- 2.4.28 PPV102-63 / -112 / -180 / -280
- 2.4.29 PPV102-360 / -560
- 2.4.30 Regulators
- 2.4.31 Auxiliary ports
- 2.4.32 Suction and discharge ports
- 2.4.33 Through drive for optional gear pump

ORDERING CODE

2.4.1 Heavy Duty Series

2.4.2 Heavy Duty Series compensator

Power control / pressure compensation -No power control and no pressure compensation

Power control

Pressure compensation

7 Power control and pressure compensation

Displacement control -

No displacement control 0 P Positive displacement control

Negative displacement control

Ν Ε Electrical positive displacement control

L Load sensing control

Power control mode

0 No power control

L Low setting range

M Medium setting range Н High setting range

see table: Power Setting Code

Power setting code

No power control 0

1-4 Power setting code see table: Power Setting Code

Power setting code

Standard compensator code at 1500 rpm drive speed, pumps without auxiliary gear pump

Motor		Nominal size [cm³]					
power [kW]	63	112	180	280	360	560	
11	L4						
15	L1						
18.5	M2						
22	M1	L3					
30	H2	М3	L3				
37		M1	L1				
45		H5	M4				
55		Н3	M2	L2			
75			H4	M4	L2		
90			H2	M2	M4		
110				H4	M2	L3	
132				H2	H4	L1	
160					H2	M3	
200						M1	
250						H4	
280						H2	

For other drive speeds or different power settings, please contact HYDAC.

Power control adjustment range at 1500 rpm drive speed							
Power	Nominal size [cm³]						
control mode	63	112	180	280	360	560	
L Low setting range	10.6 - 18.9	19.1 - 30.7	29.9 - 45.6	46.8 - 75.0	59.9 - 91.1	93.5 - 160.0	
M Medium setting range	15.6 - 22.4	27.1 - 45.6	439 - 75.0	67.3 - 113.5	87.9 - 134.5	137.2 - 239.2	
H High setting range	22.0 - 33.8	37.0 - 62.1	55.0 - 96.5	90.0 - 150.1	109.4 - 192.9	197.3 - 300.3	

2.4.3 Standard gear pump models

Pump size and ordering code							Gear pump displacement						
PPV102-63	_	1	1	#	#	S	_	####	_	#			10 cm³/rev
PPV102-112	-	1	1	#	#	S	-	####	-	#			10 cm³/rev
PPV102-180	_	1	1	#	#	S	_	####	_	#			10 cm³/rev
PPV102-280	-	1	2	#	#	S	_	####	-	#			15 cm²/rev
PPV102-360	ı	1	Α	#	#	S	_	####	ı	#	_	1	25.3 cm³/rev
PPV102-560	_	1	Α	#	#	S	_	####	_	#	_	1	32.5 cm³/rev

Note: The "#" denotes all available models for the pump. See point 2.4.1 Ordering code for the pump.

TECHNICAL INFORMATION

2.4.4 Specifications

Pump size			63	112	180	280	360	560
Geometric disp	olacement	[cm³/rev]	v] 63 112 180 280 360 560					560
Dungaring	Rated	[bar]			3	50		
Pressure	Peak	[bar]	400					
	Min.	[rpm]	600					
Drive speed	Max.self-priming	[rpm]	1800	1800	1800	1500	1800	1500
	Max. *	[rpm]	3250	2700	2300	2000	2300	2000
Power (1500 rp	m, 350 bar)	[kW]	61	108	173	270	347	539
Drive torque (3	50 bar)	[Nm]	388 688 1101 1720 2210			3430		
Pre-fill oil volu	me	[cm³]	1000	1200	2900	3200	6000	6500
Approx. weight		[kg]	48	68	86	160	160	300

^{*} required supply pressure p = 1 bar (2 bar abs.)

2.4.5 Hydraulic fluids

H, HL Mineral Oil

HEES Fatty acid esters (Polyolester), biodegradable

HFC Water glycol

HLP, HLPD, HV, HVLP High quality hydraulic fluids based on mineral oil and

with additional anti-wear properties

(at pressures above 200 bar)

HFD-U Polyolester

For use with other fluids, please contact HYDAC.

2.4.6 Viscosity range

Minimum viscosity: 10 cSt (mm²/s) **Normal** operating viscosity: 10 - 200 cSt (mm²/s) Maximum viscosity (during cold start): 1000 cSt (mm²/s)

2.4.7 Temperature range

-20 to +80 °C

The highest fluid temperature will be at the drain port of the pump, up to 20 °C higher than in the reservoir.

2.4.8 Fire-resistant fluids

	Fluid type				
	Mineral oil	Polyolester	Water glycol*		
Maximum continuous pressure (bar)	3	207			
Temperature range (°C)	-20 ~ +80	0 ~ +60	10 ~ 50		
Cavitation resistance	0				
Pump service life compared to mineral oil	100 %	50 % ~ 100 %	20 % ~80 %		

= Recommended

= Acceptable but with reduced pump life

= Do not exceed the rated speed. Maximum speed for size 280 pumps when operated with water glycol: 1500 rpm

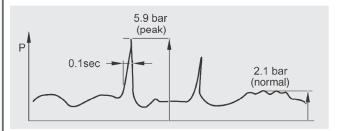
2.4.9 Seals

Fluid type code (see Ordering code)	Generic fluid type	Shaft seal ring material	General seal material (O-Rings)	
_	Mineral oil	FPM	NBR	
W	Water glycol	NBR	NBR	
Р	Polyolester	FPM	FPM	

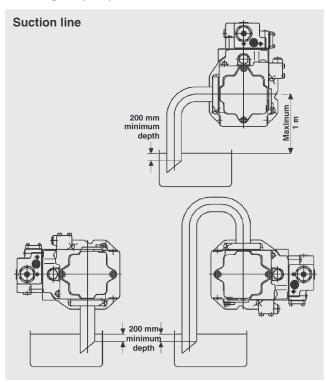
2.4.10 Filtration

For maximum service life of the pump and system components, the system should be protected from contamination by effective filtration.

Cleanliness class to NAS 1638 Class 9 (20/18/15 ISO 4406:1999) or cleaner.

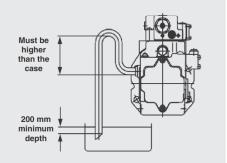

2.4.11 Adjustments

	Vol	ume
	Volume adjustment screw rate	Min. adjustable displacement
	per ¼ turn	displacement
Pump size	[cm³]	[cm ³ /rev]
PPV102-63	1.54	22.5
PPV102-112	2.86	56
PPV102-180	3.81	87
PPV102-280	5.10	140
PPV102-360	3.81	2x 87
PPV102-560	5.10	2x 140


Recommended pump installation

The pump should be installed horizontally with the case drain line initially rising above the level of the pump before continuing to the tank as shown in the diagram below. Do not connect the drain line to the suction line.

The top drain port should always be used and the internal diameter of the drain line should be equal to or larger than the drain port to minimise pressure in the pump case. The pressure in the pump case should not exceed 2.1 bar as shown in the diagram below. Peak pressure should never exceed 5.9 bar.



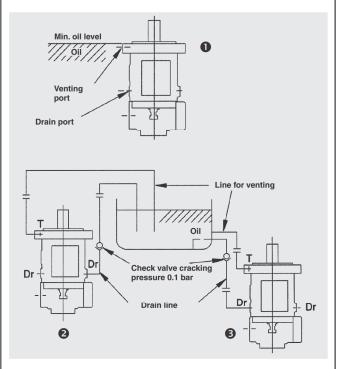
Installing the pump above the tank

Drain line

"Goose neck" configuration ensures oil remains in the pump case.

Precautions:

- The suction and drain lines must be immersed at least 200 mm below the lowest oil level under operating conditions.
- The distance between the oil surface and the centre of the shaft must not exceed 1 m.
- The oil in the pump case must be refilled if the pump has not been operated for one month or longer.
- When installing a HYDAC pump always ensure that the fluid in the pump is prevented from draining away during stoppages.


Vertical installation of the pump (shaft at the top)

For applications requiring vertical installation (shaft at the top) the pump must be provided with additional means to lubricate the front bearing. Do not use a standard pump for this type of application (a "V - vertical installation" version should be used instead).

The oil level in the tank should be higher than the pump mounting flange (see diagram **1** below). If the oil level in the tank is lower than the mounting flange, forced lubrication is required through the venting port (1-2 l/min.)

When installing the pump in the tank and submerged in the oil, open the drain and venting ports to provide adequate lubrication to the internal components.

If the pump is installed outside the tank, the drain and venting lines must be run to the tank (see diagram 3). If these lines are higher than the level of the oil (see diagram 2), they must be filled with oil before commissioning.

A check valve with cracking pressure of 0.1 bar should be fitted to the case drain port as shown.

Recommended check valves

Pump	Check valve	Part no.
PPV102-63	RV-12-0.1X/0 - 0.1 bar	3474099
PPV102-112 to PPV102-280	RV-16-0.1X/0 - 0.1 bar	858636
PPV102-360 to PPV102-560	RV-20-0.1X/0 - 0.1 bar	706734

CONTROL OPTIONS

2.4.13 Variable delivery positive displacement control – 0P

Description	Performance characteristics	Hydraulic circuit
The pilot pressure enables the flow rate of the pump to be steplessly adjusted.	Q	A ₁ A ₂
An increase in pilot pressure will result in an increase in flow, hence the positive control. Also available as negative control - 0N	p pi Range of displacement control 2.5 – 100 %	P ₁

2.4.14 Variable delivery electrical displacement control – 0E

Description	Performance characteristics	Hydraulic circuit
The proportional valve enables the flow rate of the pump to be steplessly adjusted.	Q	
If the gear pump is also ordered, there is no need for additional external piping for the proportional valve.	p	
An electrical amplifier card is also required.	Input current (mA) E	XMAX - CAMM COUNTY 82
	Range of displacement control 2.5 – 100 %	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

2.4.15 Power control – 10

Description	Performance characteristics	Hydraulic circuit
In response to a rise in operating pressure, the swash plate adjustment angle is reduced, limiting the input power.		A1
This control prevents an overload of the drive motor.	p	D, B ₁ b

2.4.16 Power and positive displacement control – 1P

Description	Performance characteristics	Hydraulic circuit
This is a combination of power control and positive displacement control.	α	
The pilot pressure enables the flow rate of the pump to be steplessly adjusted.		<u> </u>
An increase in pilot pressure will result in an increase in flow, hence the positive control.	p	
Also available as negative control - 1N	α	P
		2000 - 1 - 2000 minutes
	pi Range of displacement control 15 – 100 %	- <u>+</u> 1-1-1-1 D₁B₁ b B₂

2.3.17 Power and electrical displacement control - 1E

Description Performance characteristics Hydraulic circuit This is a combination of power control and electrical displacement control. The proportional valve enables the flow rate of the pump to be steplessly adjusted. An increase in the input signal will result p in an increase in flow. α An electrical amplifier card is also required. Input current (mA) Range of displacement control 2.5 - 100 %

2.4.18 Pressure compensation control – 4000

Description	Performance characteristics	Hydraulic circuit
As the system pressure rises to the preset value, the swash plate pivots back to prevent the system pressure from exceeding the compensator setting. A pressure relief valve must be built into the system. Note: The factory pressure setting is 200 bar with an adjustable range of 80 bar to 315 bar. Pressures above 315 bar must	Q	Po A1
315 bar. Pressures above 315 bar must be stated clearly on the order.	Range of displacement control 0 – 100 %	D _r B ₁

2.4.19 Pressure compensation and load sensing control - 4L00

Description	Performance characteristics	Hydraulic circuit
The pump displacement is controlled to match the flow requirements as a function of the system differential pressure (load pressure vs. pump pressure). The factory setting of the differential pressure is 25 bar. In addition, there is a pressure cut-off function incorporated into the control. Note: The factory pressure setting is 200 bar with an adjustable range of 80 bar to 315 bar. Pressures above 315 bar must be stated clearly on the order.	Q p P Range of displacement control 0 – 100 %	Not supplied PL A1 A1 A1 A1 A1 An An An An An

2.4.20 Power and pressure compensation - 70

Description	Performance characteristics	Hydraulic circuit
This is a combination of power control and pressure compensation.		A1
Note: The factory pressure setting is 320 bar with an adjustable range of 80 bar to 350 bar.	Q	P _c of 12 de la

2.4.21 Power, pressure compensation and positive displacement control - 7P

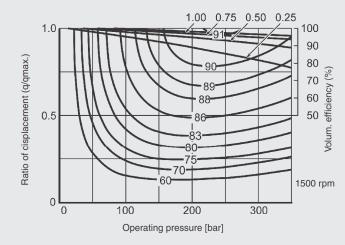
Description	Performance characteristics	Hydraulic circuit
This is a combination of power control and pressure compensation.	۵ ا	A1A2
The pilot pressure enables the flow rate of the pump to be steplessly adjusted.		I a l
An increase in pilot pressure will result in an increase in flow, hence the positive control.	p	
Note: The factory pressure setting is 315 bar with an adjustable range of 80 bar to 350 bar.		Pc 009 012
Also available as negative control - 7N	pi	SMANA I A SUM
	Range of displacement control 2.5 – 100 %	□

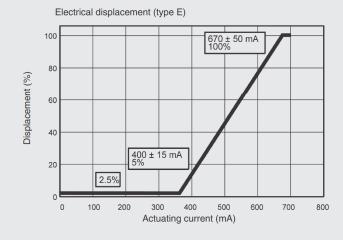
2.4.22 Power, pressure compensation and electrical displacement control - 7E

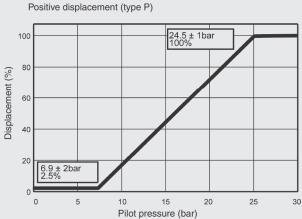
Description	Performance characteristics	Hydraulic circuit
This is a combination of power control, pressure compensation and electrical displacement control.	Q	A A
The proportional valve enables the flow rate of the pump to be steplessly adjusted. An increase in the input signal will result in an increase in flow.		
An electrical amplifier card is also required.	ρ	609 612
Note: The factory pressure setting is 200 bar with an adjustable range of 80 bar to 315 bar. Pressures above 315 bar must be stated clearly on the order.		Po A CONN CONN CONN CONN CONN CONN CONN CO
	Input signal (mA) E Range of displacement control 2.5 – 100 %	D, B ₁ b B ₂

2.4.23 Power, pressure compensation and load sensing control - 7L

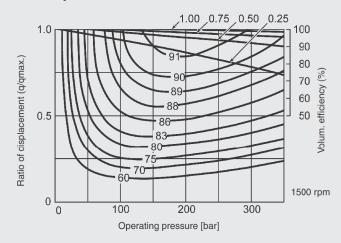
Description	Performance characteristics	Hydraulic circuit
This is a combination of power control, pressure compensation and load sensing control.		A1
The factory setting of the differential pressure is 25 bar with a setting range of 10 bar to 30 bar.	° E	
Note: The factory pressure setting is 200 bar with an adjustable range of 80 bar to 315 bar. Pressures above 315 bar must be stated clearly on the order.	p	PL **0.9
	Range of displacement control 0 – 100 %	COMMAN D. B.

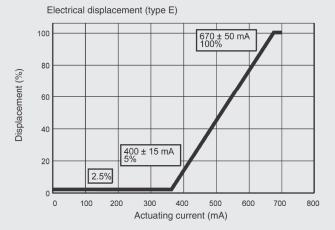

Recommended valve for use with remote pressure compensation

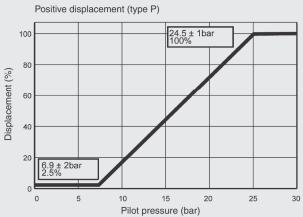

Type:	Part no.:
DB4E-01X-630V	716004


PERFORMANCE DATA

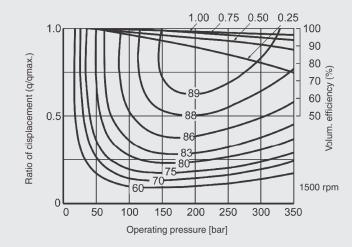
2.4.24 PPV102-63

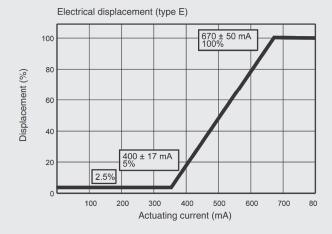

Efficiency

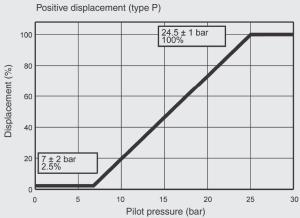




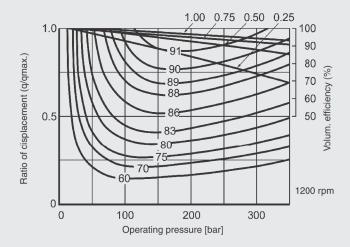
Efficiency

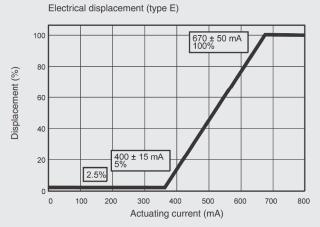


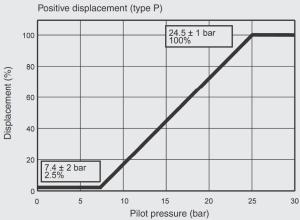


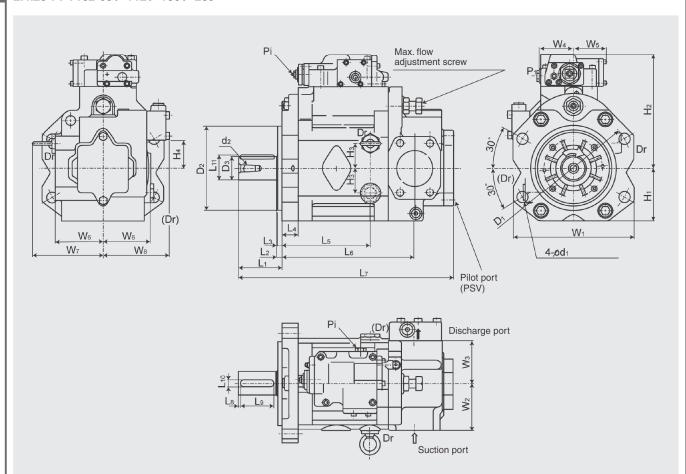


2.4.26 PPV102-180 / -360

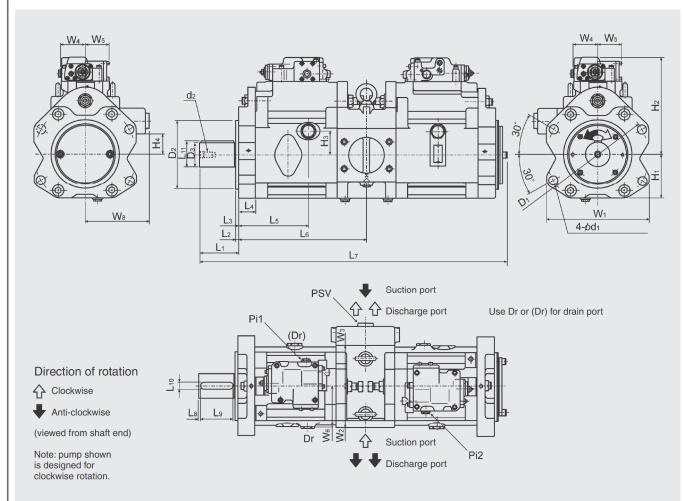

Efficiency







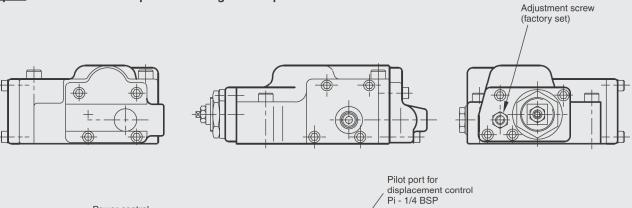
Efficiency

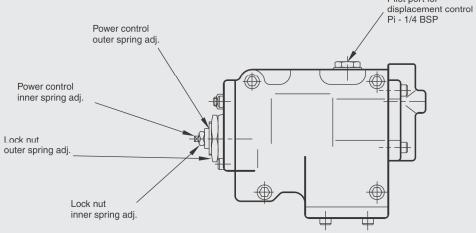


Dimensions (in mm) of single pumps without gear pump

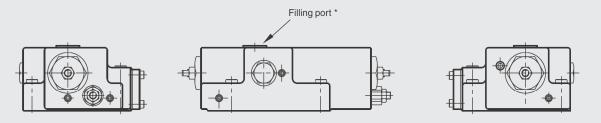
Pump size	D ₁	D ₂	D ₃	L ₁	L ₂	L ₃	L₄	L ₅	L ₆
63	180	125 ^{-0.050} _{-0.090}	32 ^{k6}	68	10	8	27	138	210
112	224	160 ^{-0.050} _{-0.090}	40 ^{k6}	92	10	8	33	167	249
180	250	180 -0.050	50 ^{k6}	92	10	8	36	190	285
280	300	200 -0.050 -0.090	55 ^{k6}	92	10	8	50	203	351

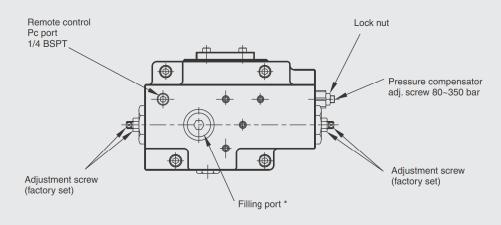
Pump size	L ₇	L ₈	L ₉	L ₁₀	L ₁₁	H ₁	H ₂	H ₃	H ₄
63	349	4	5	10	35	89	195	37	41
112	419	5	70	12	43	100	220	41	49
180	466	5	70	14	53.5	112	245	53	58
280	539	5	70	16	59	127	286	70	68

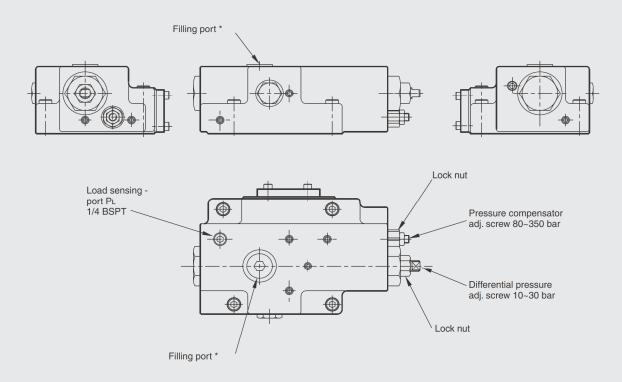

Pump size	W ₁	W ₂	W ₃	W ₄	W_5	W ₆	W ₇	W ₈	d ₁	d ₂
63	190	70	70	72	69	76	115	113	18	M12
112	234	90	80	72	69	90	138	125	22	M12
180	256	100	92	72	69	101	149	139	22	M16
280	300	120	120	72	69	118	_	167	26	M16



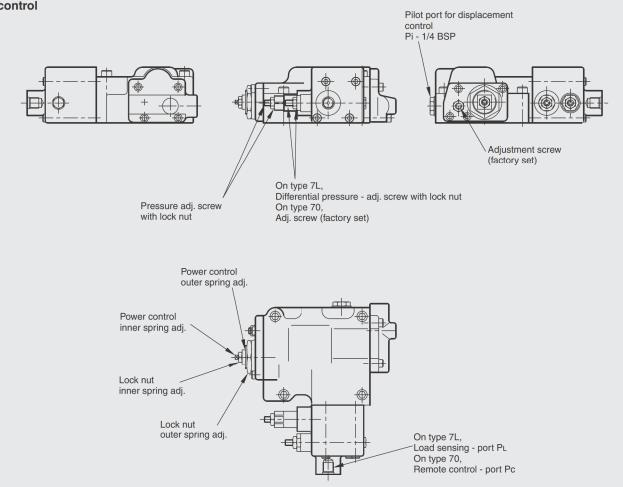
Dimensions (in mm) of tandem pumps without gear pump


Pump size	D ₁	D ₂	D_3	L ₁	L ₂	L ₃	L₄	L ₅	L ₆
360	250	180 ^{-0.050} _{-0.090}	60 ^{k6}	115	10	8	36	190	311
560	300	200 -0.050	70 ^{k6}	115	10	9	50	203	374
Pump size	L ₇	L ₈	L ₉	L ₁₀	L ₁₁	H ₁	H ₂	Нз	H ₄
360	786	5	95	18	64	112	245	53	51
560	896	5	95	20	74.5	127	286	70	59
Pump size	W ₁	W ₂	W_3	W 4	W ₅	W ₆	W ₈	d₁	d ₂
360	256	100	100	72	69	101	165	22	M16
560	300	120	120	72	69	118	185	26	M16


<u>Type 1</u> Power control with positive or negative displacement control



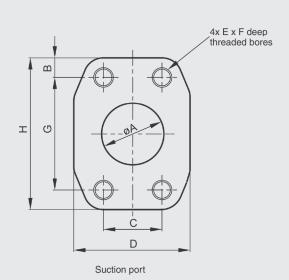
Type 4 Pressure compensation control

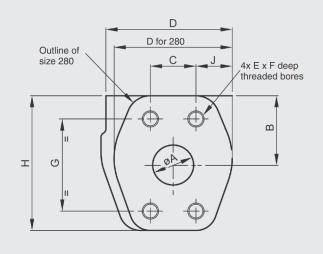


Type 4L Pressure compensation and load sensing control

Type 7 Power control with positive or negative displacement control, pressure compensation or load sensing control

2.4.31 Auxiliary ports


Dimensions of drain ports (in mm)


Pump size	а	b	С	d
63	½ BSP	22.6	2.5	19
112	¾ BSP	30.8	3.5	20
180 / 360	¾ BSP	30.8	3.5	20
280 / 560	¾ BSP	30.8	3.5	20

Other ports

Port	Size
Pc and PL for 4000 control	1/4 BSPT
Pc and PL for type 7 control	1/4 BSP
P _i and PSI pilot port for displacement control	1/4 BSP
Measurement ports	1/4 BSP
Venting port, V-type Sizes 63, 112, 180, 360	⅓ BSP
Venting port, V-type Sizes 280, 560	1/4 BSP

2.4.32 Suction and discharge ports

Discharge port

124

140

26

23

96.8

96.8

Suction port

Size	Α	В	С	D	D E		G	Н
63	38	12	35.7	71	M12 x 1.75	18	69.9	94
112	64	12	50.8	91	M12 x 1.75	18	88.9	113
180	76	15	61.9	108	M16 x 2.0	24	106.4	136
280	89	15.5	69.9	123	M16 x 2.0	24	120.7	152
360	102	15	77.8	152	M16 x 2.0	24	130.2	162
560	102	18	77.8	152	M16 x 2.0	24	130.2	170

Discharge port

360

560

51

51

62

72

	<u> </u>								
Size	Α	В	С	D	E	F	G	Н	J
63	25	41	27.8	77	M10 x 1.5	18	57.2	83.5	22
112	32	49	31.8	91	M12 x 1.75	18	66.7	98	30
180	38	58	36.5	111.5	M16 x 2.0	24	79.4	112	36
280	38	70	36.5	96	M16 x 2.0	24	79.4	112	30
360	32	51	31.8	80	M12 x 1.75	22	66.7	102	23
560	38	59	36.5	83	M16 x 2.0	24	79.4	117	16
When us	When using confluent block:								

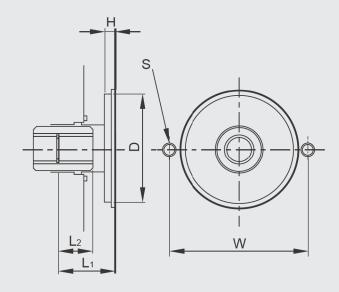
M20 x 2.5

M20 x 2.5

30

30

44.5


44.5

148

180

7	_
_	
	٠
C.	v
S	7
=	<
Č	5
<	٠
Ŋ	
Š	-
Ξ	<
C	n
Ç	V
ш	ш

2.4.33 Through drive for optional gear pump

Pump size		63, 112,	280, 360, 560		
	Without pilot port	7	G		
Ordering code	With pilot port	6	Н	А	
	D	82	101.6		
Dimensions	Н	3	11		
(SAE type "A"	W	1(106		
for 63, 112, 180 and 280) (SAE type "B"	S	2x M10 – 16 deep		2x M12 – 20 deep	
for 280, 360 and 560)	L ₁	43	34	43	
	L_{2}	26	18	26	
	Standard		t		
	Number of teeth	13 9		13	
	Diametral pitch				
Dimensions of	Pressure angle				
splined shaft	Root diameter	22.225 ^{+0.279}	16.535 -0 16.535	22.225 +0.279	
	Measurement between pins	16.589 ⁺⁰ -0.067	10.089 +0.095	16.589 ⁺⁰ -0.067	
	Pin diameter				
Max. torque (Nm)		214	60	214	