RE 10092/2023-03-15 Replaces: 12.2017

External gear pump SILENCE AZPT

- ▶ Platform N
- ► Fixed displacement
- ▶ Nominal size 20 to 36
- ► Continuous pressure up to 250 bar
- ▶ Intermittent pressure up to 280 bar

Features

- Optimized pressure pulsation, reduces noise emissions and oscillations in the system
- ► Consistently high quality due to high-volume series production
- ► Long service life
- ▶ Slide bearings for high loading
- Drive shafts conforming to ISO or SAE and customerspecific solutions
- ► Port connections: Connection flanges or screw-in threads
- ► Combinations of several pumps possible

Contents	
Product description	2
Type codes	4
Technical data	8
Hydraulic fluid	10
Drive	11
Maximum transferable drive torques	12
Multiple gear pumps	13
Flow characteristic curves	14
Power diagrams	14
Noise charts	16
Drive shafts	17
Front covers	18
Port connections	19
Dimensions - Preferred program	20
Project planning information	22
Information	23
Accessories	24

Product description

General information

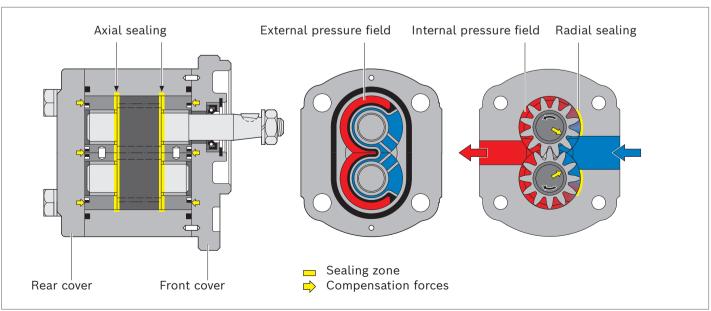
It is the central task of external gear pumps to convert mechanical energy (torque and speed) into hydraulic energy (flow and pressure). To reduce heat losses, Rexroth's external gear units offer very high efficiencies. They are realized by pressure-dependent gap sealing and highly precise production technology.

Rexroth external gear pumps are built in four frame sizes: Platform B, F, N and G. Within each platform different sizes can be realized by different gear widths. The pumps are available in the versions Standard, High-Performance, SILENCE und SILENCE PLUS. Further configuration variants are given by different flanges, ports, shafts, valve arrangements and multiple pump combinations. Moreover, in the low-noise SILENCE pumps, the dual-flank principle helps to reduce flow pulsation by up to 75%.

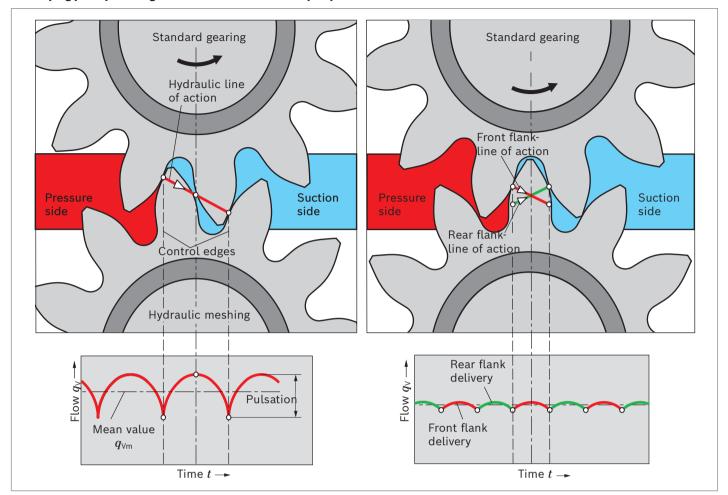
Pumping principle

The geometry of the displacement gearing, matched in form by the rotation of the drive shaft, results in the parabolic flow characteristic shown here on the next page. In a standard pump, this characteristic is repeated each time a gear tooth meshes. With their dual-flank system, the flow pulsation of SILENCE pumps is reduced by 75% — with correspondingly lower excitation of downstream system components — at double the fundamental frequency. During this process, the gear pair exhibits an extremely reduced rear flank backlash, so that hydraulic sealing is provided not just by the front flank of the driven gear, but also by the rear flanks. In this way, the front and rear

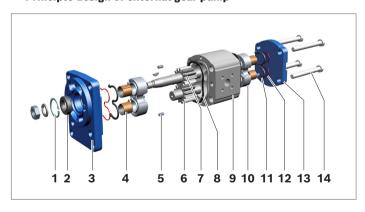
flanks alternately contribute to flow displacement. And by adapting the shape of the metering notches, the expansion of the hydraulic line of action is half that of the standard pump.


Construction

The external gear pump consists essentially of a pair of gear wheels supported in bearing bushings and the housing with a front cover and a rear cover.


The drive shaft protrudes from the front cover where it is usually sealed by the shaft seal. The bearing forces are absorbed by slide bearings. These bearings were designed for high pressures and have excellent emergency running properties, especially at low rotational speeds.

The gear wheels have 12 teeth. This keeps both flow pulsation and noise emission to a minimum. The sealing of the pressure chambers is achieved by forces depending on the working pressure. This ensures optimum efficiency. The working pressure generated in the gear chambers is transferred to the outside of the bearing bushings in specifically designed pressure fields in such a way that they are pressed against the gears and seal them up. The pressurized compression areas are limited by special seals. The seal in the area between the gear teeth and the housing is ensured by the smallest of gaps that are set depending on the pressure between the gear teeth and housing.


▼ Axial and radial sealing of gear chambers

▼ Pumping principle of High Performance and SILENCE pump

▼ Principle design of external gear pump

- 1 Retaining ring
- 2 Shaft seal
- 3 Front cover
- 4 Slide bearings
- 5 Centering pin
- **6** Gear wheel
- 7 Drive shaft

- 8 Housing seal ring
- 9 Pump housing
- 10 Bearing bushing
- 11 Axial field seal
- 12 Supporting element
- 13 Rear cover
- **14** Torx screws

Type codes

Type code single pump

01	02	03		04	05		06	07	80	09	10	11	12		13
A	Z P	Т	-			-								-	
Prod	uct										1		1		
01	External ge	ar unit													AZ
Funct	tion														
02	Pump														Р
Mode	el										,				
03	SILENCE, p	latform N	N (20 3	36 cm³/re	v)										т
Serie	s														
04	Housing wi	dth 110 i	mm												2
Versi												,			
05	Phosphated	d, high pr	ecision c	over fixat	ion										1
	Zinc plated														2
Nomi	nal size (NG	i)										,			
06	Geometric	-	ment $V_{ m g}$ [cm³/rev],	see "Tec	hnical d	ata"				020 0	22 025	028 (032 036]
Direc	tion of rota	tion									<u> </u>			•	,
07	Viewed on	drive sha	ft					clockwise)						R
								counter-c	lockwise						L
Drive	shaft							Typical fr	ont cove	er					
08	Tapered key	yed shaft	1:5	5				В							С
	Tang drive							М							N
	Splined sha	aft	SAE	J744 22-	4 13T			С							D
			SAE	J744 19-	4 11T			С							Р
				J744 16-				R							R
	Parallel key	ed shaft	SAE	J744 16-	1 (short	version)		R, C							Q
Front	cover														
09	Rectangula			ot dia. 10											В
	2-bolt flang	je		ot dia. 82				SAE J744							R
	0.1.1.			ot dia. 10				SAE J744		3)					С
	2-bolt mou	nting	spig	ot dia. 52	2 mm			with O-rii	ng						М
	connection							- ! -							
10	SAE flange	connecti	on acc. to	o ISO 616	2-1 with	metric t	nread	; ∳;							07
	SAE flange	connecti	on acc. to	o ISO 616	2-1 with	UNC thr	ead	<u>.</u>							15
	Square flan	ge (Gern	nan versio	on)				8/8							20
	UN-thread a	according	g to ISO 1	11926-1/	ASME B 1	1.1, O-rin	ıg								12
Seali	ng material														
11	NBR (nitrile	rubber)													М
	FKM (fluoro	carbon i	ubber)												Р
	NBR, shaft	seal in F	KM												К

¹⁾ Corrosion-protected version, details see "Technical data"

01	02	03		04	05		06	07	08	09	10	11	12		13
AZ	Р	Т	-			_								_	

Rear cover

		_	
1:	Axial pressure and suction port		Α
	Standard (cast iron)		В

Non standard version

13	Special version ¹⁾ (characteristics not covered by type code)	sxxxx	1
----	--	-------	---

Notice

- ► Not all of the variants according to the type code are possible.
- ▶ Please select the desired pump with the help of the selection table (preferred types) or after consultation with Bosch Rexroth.
- ► Special options are available on request.

 $_{\mbox{\scriptsize 1)}}$ For more information about special version. Please contact us.

Type code multiple pump

0	1 .	02	03	,	04	05		06	07	08	09	10	11	12	13
A	z	Р		_			-								
Prod 01		nal gea	r unit												AZ
		nat gea	ar unit												A
Funct															
02	Pum	p													P
Mode	el ¹⁾														
03			erformance	,) 25 cr				eet 10090					N
	High-	Perfor	mance) 7.1 c				eet 10088					В
) 28 cr				eet 10089					F
						.0 36 d				eet 10091					N
	SILE	NCE				28 cr				eet 10095					S
	CII F	NOE DI	110			.0 36 0				eet 10092					T
	SILE	NCE PL	.05		12.	.0 28 d	m ³ /rev		Data sn	eet 10094	+				J
			to data sh		mp stage	1)									
04			dth 92 mm												_ 1
	Hous	ing wic	dth 110 mr	m			-								2
Versi			g to data s	heet of p	ump stage	e 1)									
05	Phos	phated	, pinned												1
	Corre	osion-p	rotected, p	oinned					,						2
Nomi	inal si	ze (NG) ²⁾												
06	In ac	cordan	ce with da	ta sheet f	for the inc	lividual s	eries								
Direc	tion o	of rotat	ion												
07	View	ed on c	drive shaft				clockv	vise							R
							counte	er-clockwi	se						L
Drive	shaft	(accor	ding to pu	ımp stage	·1)										
08	1		ce with da			tage 1									
Front			rding to pu												
09	1		ce with da			tage 1									\neg
					or pump s	tuge i									
10	1		per pump ce with da		for the inc	ا مامال	orios								
			ce with da	ita sneet i	ior the inc	iividuat s	eries								
		terial													
11			rubber)												I N
			carbon rul		:- EK\$ 1	T		>							P
	NBR	(nıtrile	rubber), s	snatt seal	.ın ⊦KM (f	luorocar	bon rubbe	er)							K
Rear	1		ding to las												
12	In ac	cordan	ce with da	ta sheet	of the last	pump st	age								
Non s	standa	ard ver	sion												
13	Spec	ial vers	ion (chara	cteristics	not cover	ed by ty	oe code)								SXX

¹⁾ A letter is to be selected for each pump stage, e.g. triple pump AZPJ + AZPJ + AZPB: AZP**JJB**

²⁾ A numerical value is to be selected for each pump stage, e.g. triple pump 028/016/2.0

³⁾ A numerical value is to be selected for each pump stage, e.g. triple pump **202020**

Notice

- ► Not all of the variants according to the type code are possible.
- ▶ Please select the desired pump with the help of the selection table (preferred types) or after consultation with Bosch Rexroth.
- ▶ Special options are available on request.

Example tandem pump:

AZPT...025... + AZPS...011...

01	02	03		04	05		06	07	08	09	10	11	12
AZ	Р	TS	_	2	2	_	025/011	L	D	С	2020	Р	В

Technical data

Operating conditions

Nominal size					20	22	25	28	32	36
Series							2	x		
Displacement geomet	tric, per revolut	ion	V_{g}	cm³	20	22.5	25	28	32	36
Pressure at suction p	ort S ¹⁾	absolute	p_{e}	bar			0.7	3		
Maximum continuous	pressure		p_1	bar	250	250	250	230	210	180
Maximum intermitten	t pressure ²⁾		p_2	bar	280	280	280	260	240	210
Maximum pressure po	eaks		p_3	bar	300	300	300	280	260	230
Minimum rotational	$v = 12 \text{ mm}^2/\text{s}$	<i>p</i> ≤ 100 bar	n_{min}	rpm	500	500	500	500	500	500
speed at		p = 100 180 bar	n_{min}	rpm	600	600	600	600	600	600
	rpm	800	800	800	800	800	800			
	rpm	500	500	500	500	500	500			
Maximum rotational speed at p_2 $n_{\sf max}$ rpm					3000	3000	3000	2800	2800	2800

Rotary stiffness of drive shaft

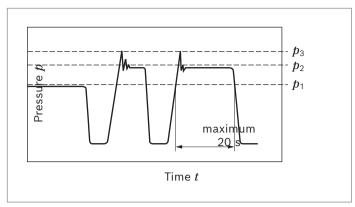
Drive shaft			С	N	D	Р	R	Q
Rotary stiffness	c	Nm/rad	489	626	626	468	489	293

General technical data

Weight	m	kg	See chapter "Dimensions"
Installation position			No restrictions
Mounting type			Flange or through-bolting with spigot
Port connections			See chapter "Port connections" on page 19
Direction of rotation, view	ed on drive	e shaft	Clockwise or counter-clockwise, the pump may only be driven in the direction indicated
Drive shaft loading			Axial and radial forces only after consultation
Ambient temperature range	e ,	0.0	-30 +80 with NBR seals (NBR = nitrile rubber)
	τ	°C	-20 +110 with FKM seals (FKM = fluorocarbon rubber)

Corrosion protection

Version 1 (phosphated): Unit with low corrosion protection	The surface serves for protection against flash rust during tran	nsport or as priming for painting.
Version 2 (galvanized, passivated): Unit with corrosion protection	Degree of corrosion and rust according to DIN EN ISO 9227	Test duration 96 h: no red rust


Notice

- ► Safety requirements pertaining to the whole systems are to be observed.
- ► Please contact us for applications with frequent load changes.

 $_{
m 1)}$ In the case of tandem pumps, the suction-side pressure difference between the individual pump stages must not exceed 0.5 bar.

²⁾ Limited service life with threaded ports (applicable for applications with $p_2 > 210$ bar)

▼ Pressure definition

p₁: Maximum continuous pressure

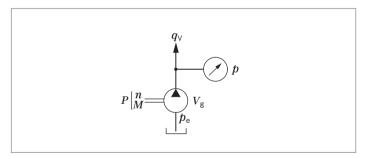
p₂: Maximum intermittent pressure

p₃: Maximum pressure peaks

Flow $q_{\text{v}} = \frac{V_{\text{g}} \times n \times \eta_{\text{v}}}{1000}$ [I/min] Torque $M = \frac{V_{\text{g}} \times \Delta p}{20 \times \pi \times \eta_{\text{hm}}}$ [Nm] Power $P = \frac{2 \pi \times M \times n}{60000} = \frac{q_{\text{v}} \times \Delta p}{600 \times \eta_{\text{t}}}$ [kW]

Key

 $V_{\rm g}$ Displacement per revolution [cm 3]

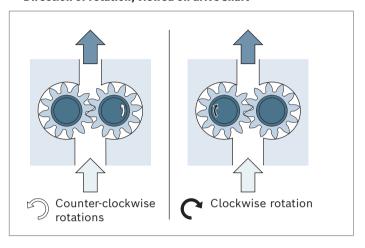

 Δp Differential pressure [bar] ($\Delta p = p - p_e$)

 $\it n$ Rotational speed [rpm]

 $\eta_{\scriptscriptstyle
m V}$ Volumetric efficiency

 $\eta_{
m hm}$ Hydraulic-mechanical efficiency

 $\eta_{\rm t}$ Total efficiency ($\eta_{\rm t}$ = $\eta_{\rm v} \times \eta_{\rm hm}$)


Notice

You can find diagrams for a rough calculation in chapter "Diagrams/Characteristic curves".

Direction of rotation

The dimensional drawings in the chapter Dimensions represent pumps for clockwise rotation. The position of the drive shaft and/or the position of suction and pressure port changes for counter-clockwise rotation.

▼ Direction of rotation, viewed on drive shaft

Hydraulic fluid

The external gear unit is designed for operation with HLP mineral oil according to DIN 51524, 1-3. Under higher load, however, Bosch Rexroth recommends at least HLP compliant with DIN 51524 Part 2.

See the following data sheet for application instructions and requirements for selecting hydraulic fluid, behavior during operation as well as disposal and environmental protection before you begin project planning:

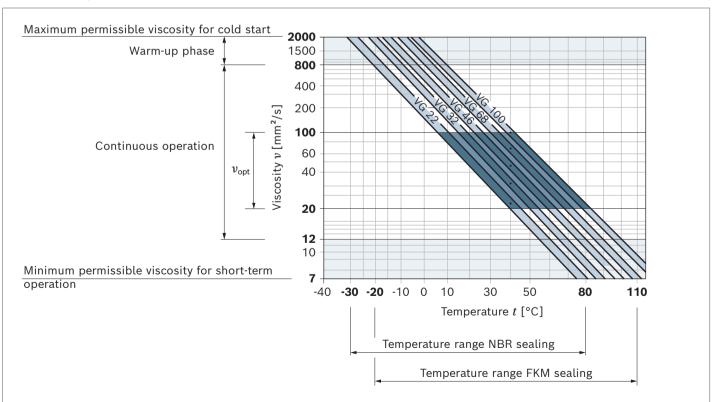
▶ 90220: Hydraulic fluids based on mineral oils and related hydrocarbons

Other hydraulic fluids on request.

Selection of hydraulic fluid

.Bosch Rexroth evaluates hydraulic fluids on the basis of the Fluid Rating according to the technical data sheet 90235.

Hydraulic fluids with positive evaluation in the Fluid Rating are provided in the following technical data sheet:

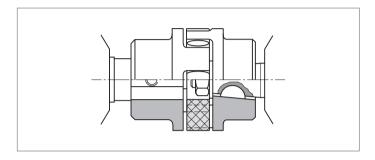

▶ 90245: Bosch Rexroth Fluid Rating List for Rexroth hydraulic components (pumps and motors)

Selection of hydraulic fluid shall make sure that the operating viscosity in the operating temperature range is within the optimum range (ν_{opt} see "Selection diagram")

Viscosity and temperature of hydraulic fluids

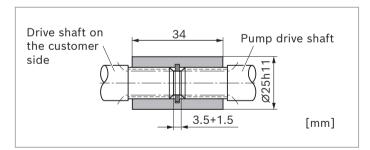
Viscosity range	
Permissible in continuous operation	ν = 12 800 mm ² /s
Recommended in continuous operation	$v_{\rm opt}$ = 20 100 mm ² /s
Permissible for cold start	$v_{\text{max}} \le 2000 \text{ mm}^2/\text{s}$
Temperature range	
With NBR seals (NBR = nitrile rubber)	t = -30 °C +80 °C
With FKM seals (FKM = fluorocarbon rubber)	t = -20 °C +110 °C

▼ Selection diagram

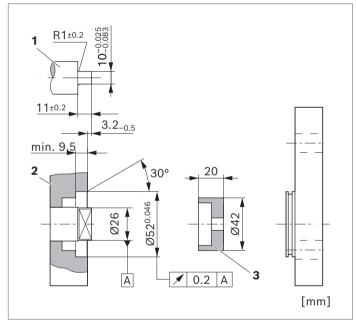


Observe the instructions for the filtration of the hydraulic fluid (see chapter "Project planning information").

Drive


1. Elastic couplings

- ► The coupling must not transfer any radial and axial forces onto the pump.
- ► The radial runout deviation from the shaft to the spigot should not exceed 0.2 mm.
- ► Admissible shaft shifting see installation information of the coupling manufacturers.


2. Coupling sleeve

- ➤ To be used on splined shaft profile according to DIN and SAE.
- ► Attention: No radial or axial forces are permitted on the pump drive shaft or coupling sleeve. The coupling sleeve must be free to move axially.
- ► The distance between the pump drive shaft and drive shaft on the customer side must 3.5+1.5 mm.
- ▶ Reserve installation space for the retaining ring.
- ▶ Oil-bath or oil-mist lubrication is required.

3. Tang drive coupling

- ► For attaching the pump directly to an electric motor or combustion engine, gearbox, etc.
- ► Pump drive shaft with special tang drive coupling and driver (3) (scope of delivery see offer drawing)
- ▶ No shaft seal
- Drive-side installation and sealing according to the following recommendations and dimensions
- ▶ Drive shaft on the customer side (1)
 - Case-hardened steel DIN EN 10084, e.g. 20MnCrS5 case-hardened 1.0 deep; HRA 83±2
 - Seal ring contact surface ground without rifling $R_t \le 4 \mu m$
- Radial shaft seal ring on the customer side (2)
 - Provide with rubber cover (see DIN 3760, type AS, or double-lipped ring)
 - Provide installation edges with 15° chamfer or install shaft seal with protection sleeve

Maximum transferable drive torques

▼ Tapered keyed shaft

Drive s	shaft	$m{M}_{\sf max}$	Nominal size	p _{2 max} Series 2x
Code	Designation	Nm		bar
	'	,	20 25	280
C	1 : 5	200	28	260
C	1:5	200	32	240
			36	210

▼ Splined shafts

Drive s	shaft	$M_{\sf max}$	Nominal size	p _{2 max} Series 2x
Code	Designation	Nm		bar
	'		20 25	280
D	SAE 1744 22-4 13T	Mmax size Sell Sell Signation Nm 20 25 28 32 36 20 25 28 32 36 20 25 28 32 36 20 25 28 32 36 20 22 25 28 32 36 20 20 22 25 28 32	260	
D	SAL 0144 22-4 101	320	32	bar 25 280 28 260 32 240 36 210 25 280 28 260 32 240 36 210 20 270 22 270 25 250 28 220
			36	
P			20 25	280
	SAE 1744 10-4 11T	180	28	260
	3AE 3744 19-4 111	100	32	240
			36	210
				270
			22	270
R	0.45 1744 40 4.07	110	25	250
n.	SAE 3/44 10-4 91	110	28	220
			32	190
			36	170

▼ Tang drive

Drive s	haft	$M_{\sf max}$	Nominal size	p _{2 max} Series 2x
Code	Designation	Nm		bar
			20	270
	Tang drive		22	240
N		95	25	220
N	rang unive	95	28	190
			32	170
			36	150

▼ Parallel keyed shaft

Drive s	shaft	$M_{\sf max}$	Nominal size	p _{2 max} Series 2x		
Code	Designation	Nm		bar		
			20	220		
			22	200		
Q	SAE J744 16-1 (short	80 -	25	180		
Ų	version)	00 -	28	160		
		•	32	140		
			36	120		

Multiple gear pumps

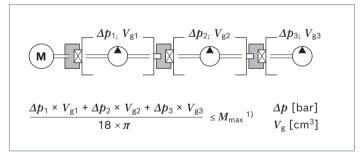
Gear pumps are well-suited to multiple arrangements, whereby the drive shaft of the first pump stage is extended to a second and possibly third pump stage. The shaft of the individual pump sections are normally connected via a driver or via a splined coupling (reinforced through drive). The individual pump stages are usually hydraulically isolated and have separate suction ports. On request a common suction port or separated but hydraulically connected suction ports are available.

For the configuration of multiple pumps, Bosch Rexroth recommends arranging the pump stage with the largest displacement on the drive side.

Notice

Basically, the parameters of the single pumps apply, however certain restrictions need to be observed:

► Maximum rotational speed:

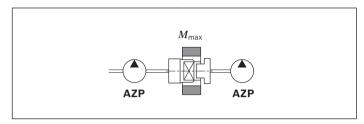

This is determined by the largest pump stage used.

▶ Pressures:

These are restricted by the maximum transmissible torques of the drive shaft, the through drive and the driver.

Addition of drive torques

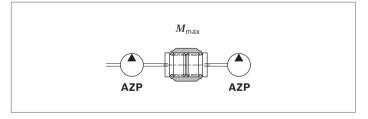
Please note, that in multiple pump arrangements the drive torques of the individual pump stages will add up according to the following formula:

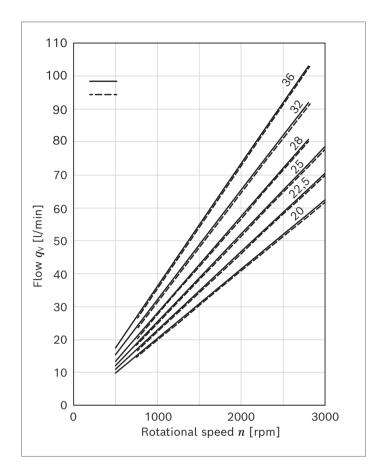


This may result in pressure restrictions for the respective pump stages.

Standard through drive (tang drive coupling)

For Platform N (AZPN, AZPT) pumps, the driver for the next pump stage can support loads up to $M_{\rm max}$ = 95 Nm. This may result in pressure limitations for subsequent pump stages.


Subsequent pumps of a smaller series determine the maximum transmissible torque.


Following pump		M _{max} [Nm]
	AZPN-1x	95
Platform N	AZPN-2x	95
	AZPT	95
	AZPW	52
	AZPF-1x	65
Platform F	AZPF-2x	85
FlationiiiF	AZPS-1x	65
	AZPS-2x	85
	AZPJ	65
Platform B	AZPB-3x	25

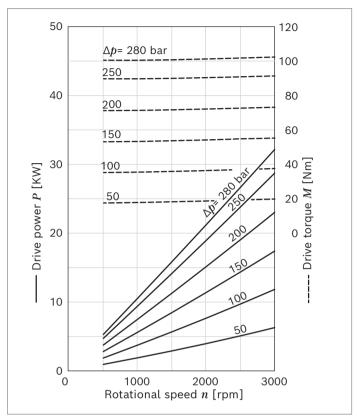
Reinforced through drive

Reinforced through drives (for up to M_{max} = 160 Nm) are available for applications with higher torques/torsional vibrations. Design available on request.

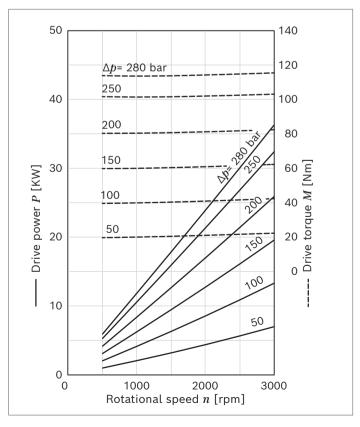
Flow characteristic curves

- p = 20 bar

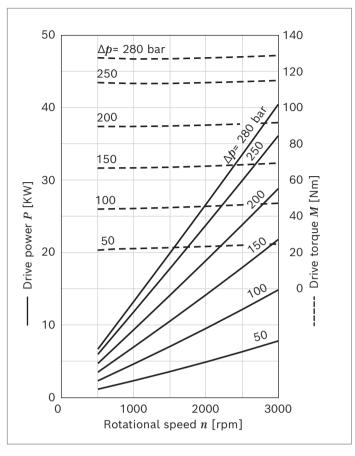
 p_2 = maximal intermittierend

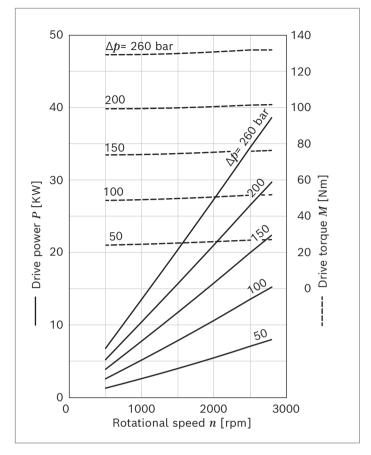

 $q_{V} = f(n, V_{g})$

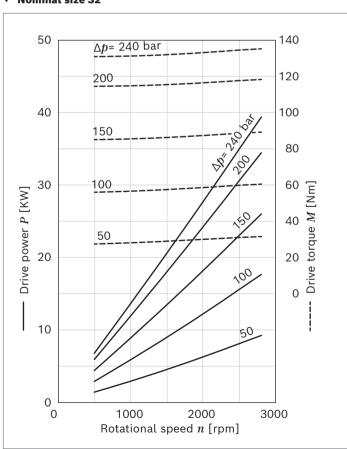
Notice

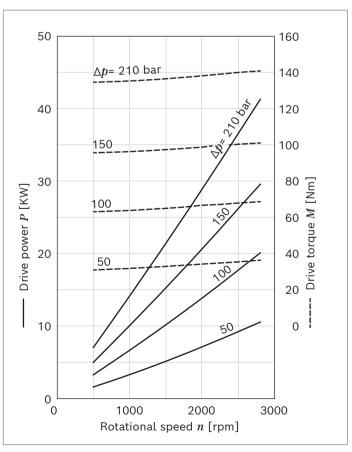

Characteristic curves measured at ν = 32 mm²/s and t = 50 °C

Power diagrams


▼ Nominal size 20


▼ Nominal size 22

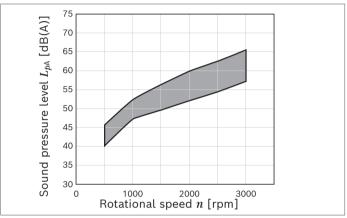

▼ Nominal size 25

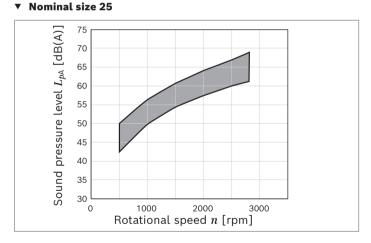

▼ Nominal size 28

▼ Nominal size 32

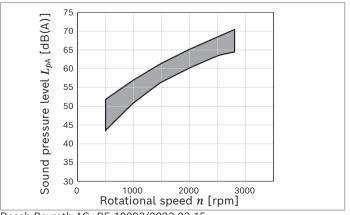
▼ Nominal size 36

Noise charts


Noise levels dependent on the rotational speed, pressure range between 10 bar and pressure value p_2 (see chapter "Technical data").

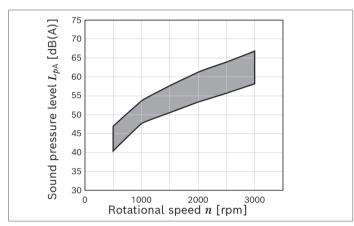

These are typical characteristic values for the respective size. They describe the airborne sound emitted solely by the pump.

Ambient influences (installation site, piping, other system components) were not taken into account.

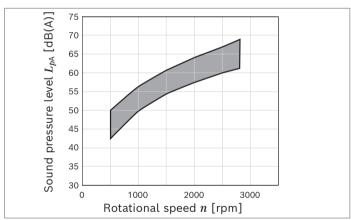

The values refer to one individual pump.

▼ Nominal size 20

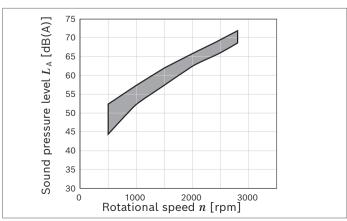
▼ Nominal size 32



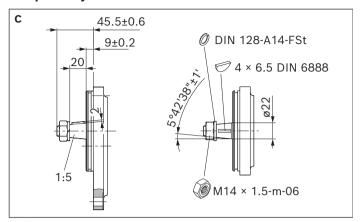
Bosch Rexroth AG, RE 10092/2023-03-15


Notice

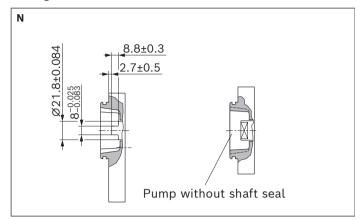
- Characteristic curves measured at $v = 32 \text{ mm}^2/\text{s}$ and t = 50 °C.
- ► Sound pressure level calculated from noise measurements made in the low reflection measuring room according to DIN 45635, Part 26.
- Distance from measuring sensor to pump: 1 m.


▼ Nominal size 22

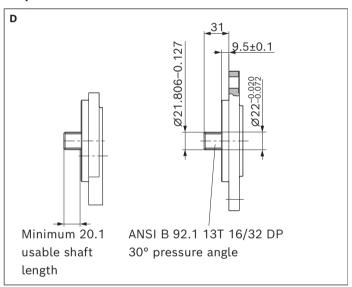
▼ Nominal size 28

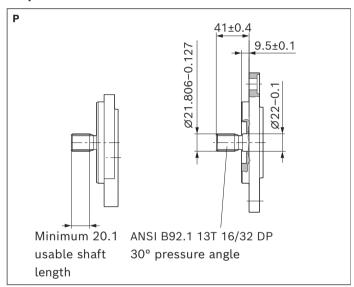


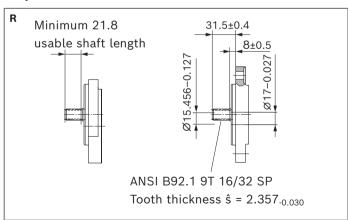
▼ Nominal size 36

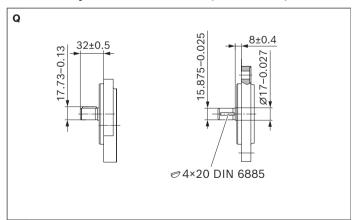


Drive shafts

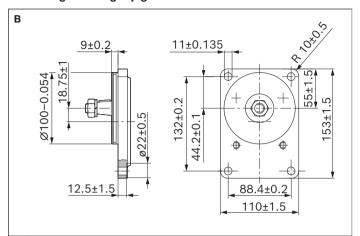

▼ Tapered keyed shaft 1:5


▼ Tang drive

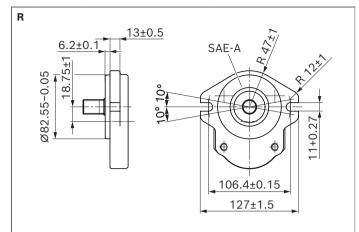

▼ Splined shaft SAE J744 22-4 13T


▼ Splined shaft SAE J744 19-4 11T

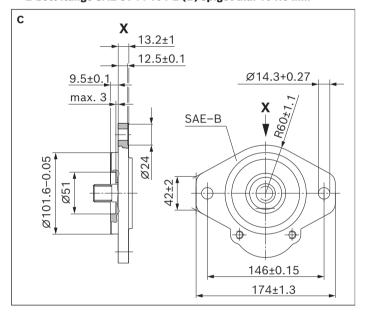
▼ Splined shaft SAE J744 16-4 9T

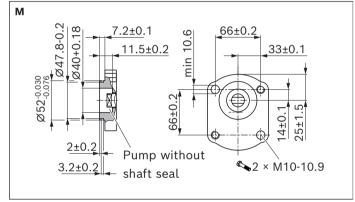


▼ Parallel keyed shaft SAE J744 16-1 (short version)

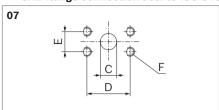


Front covers

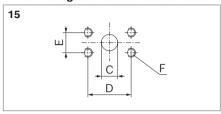

▼ Rectangular flange spigot dia. 100 mm


▼ 2-bolt flange SAE J744 82-2 (A) spigot dia. 82.55 mm

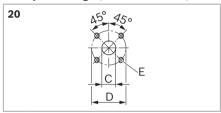
▼ 2-bolt flange SAE J744 101-2 (B) spigot dia. 101.6 mm

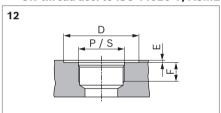


▼ 2-bolt mounting spigot dia. 52 mm, with O-ring



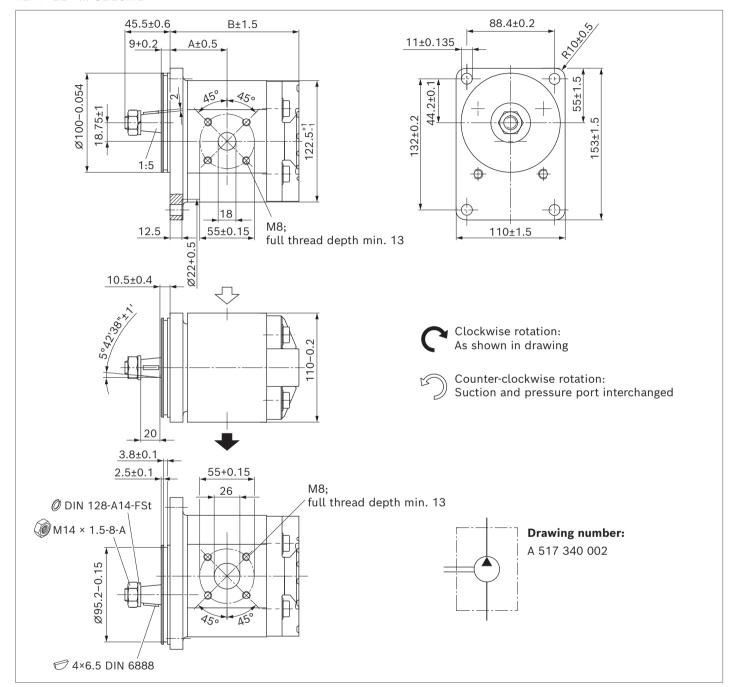
Port connections


▼ SAE flange connection acc. to ISO 6162-1 with metric thread


▼ SAE flange connection acc. to ISO 6162-1 with UNC thread

▼ Square flange (German version)

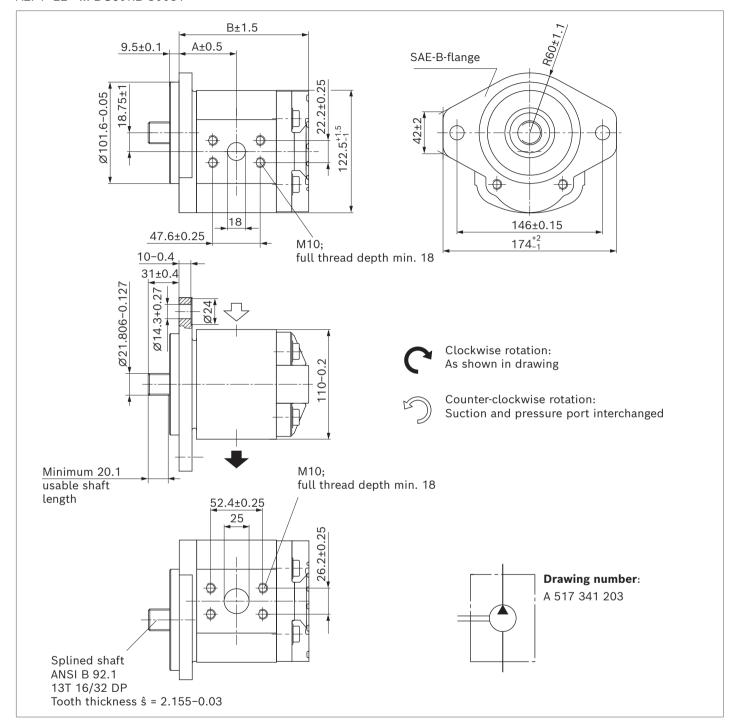
▼ UN-thread acc. to ISO 11926-1/ASME B 1.1, O-ring¹⁾



¹⁾ Limited service life with threaded ports (applicable for applications with $p_2 > 210$ bar)

Dimensions - Preferred program

Tapered keyed shaft 1:5 with rectangular flange spigot dia. 100 mm


AZPT-22- ... **CB20**MB

	Material number		Maximum intermittent pressure	Maximum rotational speed	Weight	Dimensions	
NG	Direction of rotation		$p\!\!\!/_2$	$oldsymbol{n}_{max}$	m	Α	В
	counter-clockwise	clockwise	bar	bar rpm			mm
20	0 517 625 309	0 517 625 008	280	3000		52.0	120.6
22	0 517 725 312	0 517 725 016	280	3000		53.5	123.6
25	0 517 725 313	0 517 725 017	280	3000		55.0	126.6
28	0 517 725 314	0 517 725 018	260	3000		56.5	129.6
32	0 517 725 315	0 517 725 019	240	2800		59.0	134.1
36	0 517 725 316	0 517 725 020	210	2600		61.0	138.6

Splined shaft SAE J744 22-4 13T with 2-bolt flange SAE J744 101-2 (B) spigot dia. 101.6 mmm

AZPT-22- ... DC07KB S0081

			nterial number Maximum intermittent pressure Maximum rotational sp				
NG			${m p}_2$	$oldsymbol{n}_{max}$	m	Α	В
	counter-clockwise	clockwise	bar	rpm	kg	mm	mm
20	0 517 625 310	0 517 625 009	280	3000		52.0	120.6
22	0 517 725 317	0 517 725 021	280	3000		53.5	123.6
25	0 517 725 318	0 517 725 022	280	3000		55.0	126.6
28	0 517 725 319	0 517 725 023	260	3000		56.5	129.6
32	0 517 725 320	0 517 725 024	240	2800		59.0	134.1
36	0 517 725 321	0 517 725 025	210	2600		61.0	138.6

Project planning information

Technical data

All mentioned technical data are dependent on manufacturing tolerances and are applicable for certain boundary conditions.

Note that certain deviations are therefore possible and that technical data may vary when certain boundary conditions (e.g., viscosity) change.

Pumps delivered by Bosch Rexroth are tested for function and performance.

The pump may only be operated with the permissible data (see chapter "Technical data").

Characteristic curves

When dimensioning the gear pump, observe the maximum possible application data on the basis of the characteristic curves shown.

Application information

External gear units are not approved in on-highway vehicles for safety-relevant functions, as well as functions in the drive train, for steering, braking and level regulation. Classified as on-highway vehicles are e.g. vehicles such as motorbikes, private cars, trucks, vans, freight cars, buses and trailers. The European vehicle classes L (motorbikes), M (private cars), N (vehicles for transporting goods such as trucks and vans) and O (trailers and semi-trailers) serve as reference.

Notice

When used as an auxiliary steering pump, the vehicle manufacturer should make sure that the steering system continues to operate safely, even if the auxiliary steering pump fails (regulation similar to ECE R-79 can be referred).

Filtration of the hydraulic fluid

Since the majority of premature failures in gear pumps occur due to contaminated hydraulic fluid, filtration should maintain a cleanliness level of 20/18/15 as defined by ISO 4406. Thus contamination can be reduced to an acceptable degree in terms of particle size and concentration. Bosch Rexroth generally recommends full-flow filtration. The basic contamination of the hydraulic fluid filled in should not exceed class 20/18/15 as defined by ISO 4406. New fluids are often above this value. In such instances, a filling device with a special filter should be used. Bosch Rexroth is not liable for wear due to contamination. For hydraulic systems or devices with function-related, critical failure effects, such as steering and brake valves, the type of filtration selected must be adapted to the sensitivity of these devices.

Further information

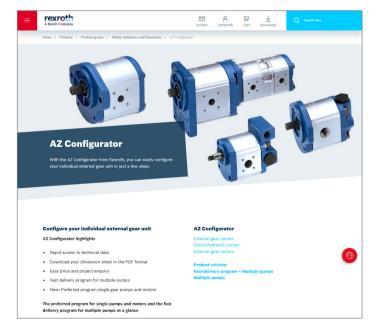
Installation drawings and dimensions are valid at date of publication, subject to modifications.

Further information and notes on project planning can be found in the "General Operating Instructions for External Gear Units" (07012-B, chapter 5.5).

Information

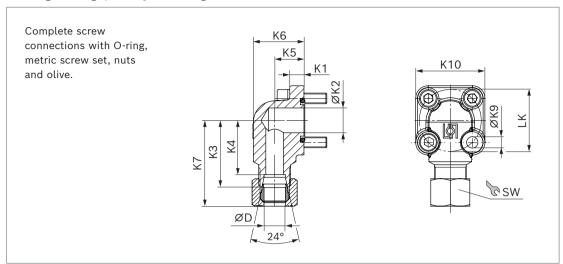
AZ configurator

With our practical product selector, it will take you next to no time to find the right solution for your applications, no matter whether it is SILENCE PLUS or another external gear unit.


The selector guides you through a selection of features to all of the products available for order. By clicking on the order number, you can view and download the following product information: Data sheet, dimension sheet, operating conditions, and tightening torques.

You can order your selection directly via our online shop and at the same time benefit from an additional discount of 2%. And if you need something really quickly, simply use our fast delivery and preferred programs (GoTo). Then the goods will be sent within 10 working days.

You also have the possibility to easily and conveniently configure your individual external gear unit with our AZ configurator. All the necessary data that you need for the project planning of external gear units is requested by means of the menu navigation.


For an already existing configuration you receive as a result the order number, the type code, as well as further information. If your configuration does not lead to a product that is available for order, our online tools provide you with the possibility of sending a project request directly to Bosch Rexroth. We will then get in contact with you.

Link: www.boschrexroth.com/az-configurator

Accessories

90° angle flange, for square flange 20 (German version)

LK	D	Series ¹⁾	Material number	p _{max}	K1	K2	КЗ	K4	K5	К6	K7	К9	K10	sw	Scr	ews	O-ring	Weight
mm	mm			bar	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	2 ×	2 ×	NBR	kg
55	20	S	1 515 702 004	250	13	18.2	45	34.5	24	38	57.0	8.4	58	36	M8 × 25	M8 × 50	32 × 2.5	0.62
55	30	S	1 545 719 006	250	12	26.5	49	38.5	32	51	63.5	8.4	58	50	M8 × 25	M8 × 50	32 × 2.5	0.63
55	35	L	1 515 702 005	100	12	26.5	49	38.5	32	52	61.0	8.4	58	50	M8 × 25	M8 × 60	32 × 2.5	0.77
55	42	L	1 515 702 019	100	12	26.5	49	38.0	40	64	61.5	8.4	58	60	M8 × 25	M8 × 70	32 × 2.5	1.04