

# 2-way pressure reducing valve, direct operated KRD



- ▶ Size 2
- ▶ Series B
- ► Maximum working pressure 400 bar
- ► Maximum flow 25 l/min

#### **Features**

- ► Cartridge valve
- ▶ Mounting cavity R/ISO 7789-27-01-1-98
- ► Available in 3 pressure stages (100, 210 and 315 bar)
- ► Versatile use for pressure reducing functions without leakage oil drain

#### **Contents**

| Type code                       | 2 |
|---------------------------------|---|
| Preferred types                 | 2 |
| Functional description          | 3 |
| Fechnical data                  | 4 |
| Characteristic curves           | 5 |
| Dimensions                      | 6 |
| Mounting cavity                 | 7 |
| Available individual components | 8 |
| Related documentation           | 8 |

# Type code

2

| KRD |    |    |    |    |    | <del>.</del> |    |    | 1.0 |
|-----|----|----|----|----|----|--------------|----|----|-----|
| 01  | 02 | 03 | 04 | 05 | 06 | 07           | 08 | 09 | 10  |

| 01    | e type                                                                     | KDD     |
|-------|----------------------------------------------------------------------------|---------|
| 01    | 2-way pressure reducing valve, direct operated                             | KRD     |
| Adju  | stment type                                                                |         |
| 02    | Rotary knob <sup>1)</sup>                                                  | 1       |
|       | Threaded pin with hexagon and protective cap                               | 2       |
|       | Rotary knob with scale, lockable <sup>1)</sup>                             | 3       |
| Pres  | sure stage                                                                 |         |
| 03    | 100 bar                                                                    | F       |
|       | 210 bar                                                                    | L       |
|       | 315 bar                                                                    | Р       |
| Size  |                                                                            |         |
| 04    | Size 2                                                                     | 2       |
| Desig | gn principle                                                               |         |
| 05    | Seat valve                                                                 | А       |
| Serie | es ·                                                                       |         |
| 06    | Series B                                                                   | В       |
| Mou   | nting cavity                                                               |         |
| 07    | Mounting cavity R/ISO 7789-27-01-1-98 (see page 7)                         | L       |
| Pres  | sure presetting                                                            |         |
| 08    | Without pressure presetting                                                | No code |
|       | With pressure presetting <sup>2)</sup>                                     |         |
| Corr  | osion resistance                                                           |         |
| 09    | None                                                                       | No code |
|       | High corrosion protection (720 h salt spray test according to EN ISO 9227) | J5      |

# **Preferred types**

10 FKM (fluorocarbon rubber)

| Pressure stage | Туре        | Material no. |
|----------------|-------------|--------------|
| 100 bar        | KRD2F2AB/LV | R901082845   |
| 210 bar        | KRD2L2AB/LV | R901082849   |
| 315 bar        | KRD2P2AB/LV | R901082857   |

<sup>1)</sup> Only with pressure stage 100 bar ("F")

<sup>2)</sup> Example (pressure setting takes place at  $q_{\rm V}$  = 1 to 2 l/min): set to 50 bar: .../L-**50**V

## **Functional description**

#### General

The direct operated 2-way pressure reducing valve type KRD is designed as tight seat valve. It is used for the leak-free pressure reduction of an operating pressure. It basically consists of the screw-in housing (1) with spring (6) and adjustment type (5), as well as control spool (3), valve seat (2) and closing element (4).

#### **Function**

In the initial position, the seat of the valve is open. Hydraulic fluid may flow from port **P** to **A**. If the pressure in port **A** increases to the pressure value set at the adjustment type (5), the closing element (4) closes the connection from **P** to **A**. The further increasing system pressure (port **P**) no longer influences the pressure in port **A** (pressure holding function). The valve regulates pressure losses in port **A** (consumer).

#### ▼ Section and symbol KRD



- 1 Screw-in housing
- 2 Valve seat
- 3 Control spool
- 4 Closing element
- 5 Adjustment type
- 6 Spring

#### Technical data

| General                   |    |         |
|---------------------------|----|---------|
| Weight                    | kg | 1       |
| Installation position     |    | Any     |
| Ambient temperature range | °C | -20 +80 |

| Hydraulic                                                     |                           |              |       |                              |                             |  |
|---------------------------------------------------------------|---------------------------|--------------|-------|------------------------------|-----------------------------|--|
| Maximum working pressure                                      | Port <b>P</b>             | p            | bar   | 400                          |                             |  |
|                                                               | Port A                    | p            | bar   | 315                          |                             |  |
| Set pressure at port A <sup>1)</sup>                          |                           |              |       | Nominal pressure             | Minimum adjustable pressure |  |
|                                                               | Pressure stage 100 bar    |              | bar   | 100                          | 10                          |  |
|                                                               | Pressure stage 210 bar    |              | bar   | 210                          | 20                          |  |
|                                                               | Pressure stage 315 bar    |              | bar   | 315                          | 30                          |  |
| Maximum nominal flow                                          |                           | $q_{V}$      | l/min | 25                           |                             |  |
| Maximum permissible leakage                                   | in the application/system |              | l/min | 1.5                          |                             |  |
| Hydraulic fluid                                               |                           |              |       | See table below              |                             |  |
| Hydraulic fluid temperature range                             |                           | θ            | °C    | -20 +80                      |                             |  |
| Viscosity range                                               |                           | ν            | mm²/s | 5 1000 (preferably 10        | 100)                        |  |
| Maximum admissible degree o<br>Cleanliness level per ISO 4406 | •                         | raulic fluid |       | Level 20/18/15 <sup>2)</sup> |                             |  |

#### **Notice**

For applications outside these values, please consult us!

- 1) Exact pressure control at p > 20 bar.
- 2) Cleanliness levels specified for the components must be maintained in the hydraulic systems. Effective filtration prevents malfunctions and simultaneously extends the service life of the components.

We recommend a filter with a minimum retention rate of  $\beta_{10} \ge 75$ .

#### Hydraulic fluid

| Hydraulic fluid |                    | Classification | Suitable sealing materials | Standards | Data sheet |
|-----------------|--------------------|----------------|----------------------------|-----------|------------|
| Mineral oils    |                    | HL, HLP        | FKM                        | DIN 51524 | 90220      |
| Biodegradable   | Insoluble in water | HEES           | FKM                        | ISO 15380 | 90221      |
|                 | Soluble in water   | HEPG           | FKM                        | ISO 15380 | 90221      |

#### **Notice**

- ► Further information and details on using other hydraulic fluids are available in the above data sheets or on request.
- ► Restrictions are possible with the technical valve data (temperature, pressure range, service life, maintenance intervals, etc.)!
- ▶ **Biodegradable:** If biodegradable hydraulic fluids are used that are also zinc-solving, there may be an accumulation of zinc.

## **Characteristic curves**

#### **▼** Reduced pressure dependent on the flow



#### Notice

The p- $q_{\rm V}$  characteristics of the 3 pressure stages at the relevant nominal pressures are shown. Recommendation for the pressure differential:  $\Delta p \geq 20$  bar

## ▼ Flow resistance $\Delta p$ - $q_{\vee}$ characteristic curve



#### **Dimensions**

6

#### ▼ KRD with screw-in thread



- Adjustment type "1": Rotary knob (only with pressure stage 100 bar "F")
- **2.1** Adjustment type "2":

  Threaded pin with hexagon SW5 and protective cap
- **2.2** Adjustment type "2", version "J5": Hexagon SW19
- 3 Adjustment type "3": Lockable rotary knob with scale (only with pressure stage 100 bar "F")

- 4 Plastic ring with marking
  (Adjust the neutral position after screwing in the valve, then fix
  the ring by horizontal shifting until it snaps into place on the
  reducing piece)
- **5** Lock nut SW19, tightening torque  $M_A$  = 30±5 Nm
- **6** Lock nut SW30, tightening torque  $M_A$  = 100 Nm
- 7 Space required to remove key
- **8** Hexagon SW36, tightening torque  $M_{\rm A}$  = 170 Nm

## **Mounting cavity**

▼ Version according to R/ISO 7789-27-01-1-98 (similar to ISO 7789-27-01-0-98): 2 main ports; thread M27×2



<sup>1)</sup> Deviating from ISO 7789 27-01-0-98:

Valves for mounting cavity ISO 7789 27-01-0-98 can be screwed into this bore!

<sup>2)</sup> Depth of fit

# **Available individual components**



| Item | Denomination                | Material no. |
|------|-----------------------------|--------------|
| 999  | Seal kit of the valve (FKM) | R961001402   |

## **Related documentation**

► Mineral oil-based hydraulic fluids

► Environmentally acceptable hydraulic fluids

► MTTF<sub>D</sub> values

Data sheet 90220 Data sheet 90221 Data sheet 90294