RE 28155/2022-01-21 Replaces: 2020-04-28

2-way flow control valve Type 2FRM

- ► Sizes 6 and 10
- ► Series 1X
- ► Maximum working pressure 315 bar
- ► Maximum flow 60 l/min

Features

- ► Cartridge valve
- ► Adjustment element with internal hexagon
- ▶ With built-in check valve
- ▶ Low start-up jump

Contents

Type code	2
Functional description	3
Technical data	4
Characteristic curves	5
Dimensions	6
Mounting cavity	7
Available individual components	8
Related documentation	8

Information on available spare parts: www.boschrexroth.com/spc

Type code

2

Γ	2FRM		K	2	l –	1X	/		R	v	*
	01	02	03	04		05		06	07	80	09

Valv	e type					
01	2-way flow control va	lve	2FRM			
Size						
02	Size 6	6				
	Size 10		10			
	T					
03	Cartridge valve		К			
Adju	stment element					
04	Grub screw with internal hexagon					
Seri	es					
05	Series 10 to 19 (unch	1X				
Flow	(A → B)					
06	Size 6	Up to 6.0 l/min	6Q			
		Up to 16.0 l/min	16Q			
		Up to 32.0 l/min	32Q			
	Size 10	Up to 60.0 l/min	60Q			
Che	ck valve					
07	With check valve		R			
Seal	ing material		_			
80	FKM (fluorocarbon ru		V			
	(Other seals on reque	est.)				
	T					
09	Further details in clea	ar text	*			

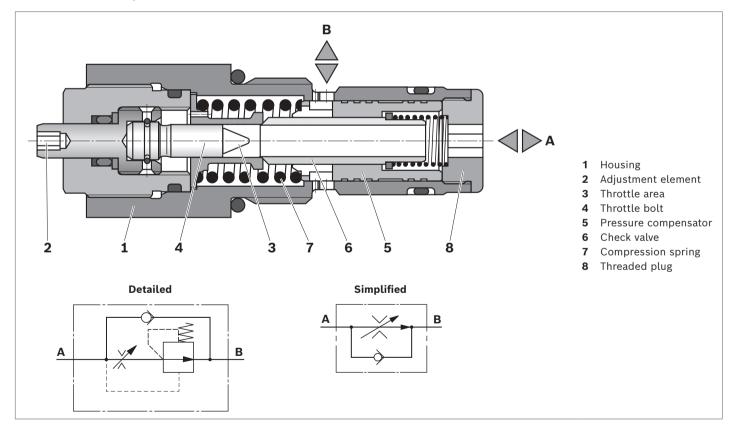
Notice

Preferred types and standard components can be found in the EPS (Standard Price List).

Functional description

General

Flow control valves type 2FRM.K are 2-way flow control valves suitable for fitting into manifold systems. They are used for maintaining a constant flow, independent of pressure and temperature.


The valve basically consists of the housing (1), adjustment element (2), throttling area (3), throttle bolt (4), pressure compensator (5) and check valve (6).

Function

Throttling of the flow from port **A** to port **B** occurs at the throttle area (3). The throttle cross-section is changed by turning the adjustment element (2). This takes place between the throttle area (3) and the throttle bolt (4). In order to hold the flow constant, independent from the pressure, in port **B** a pressure compensator (5) is fitted downstream of the throttle area (3).

The pressure compensator (5) is pressed against the plug (8) by the compression spring (7) and so stays in the open position as long as there is no flow through the valve. When flow takes place through the valve the pressure, which is present in port A, applies a force onto the pressure compensator (5). The pressure compensator moves into the compensating position until the forces are balanced. If the pressure increases in port A, then the pressure compensator (5) moves towards its closed position until the forces are balanced. Due to this continuous compensating action a constant flow is obtained. Free return flow from port B to port A is obtained via the check valve (6).

▼ Cross-section and symbol 2FRM

Technical data

General	Size	6	10
Weight	kg	0.19	0.6
Installation position	Д	ny	
Ambient temperature range	°C –	20 +50	

Hydraulics			Size		6		10
Maximum working pressure	Port A	p	bar	315			210
Pressure differential Δp for free return flow ¹⁾	B → A	Δp	bar	See chara	page 5		
Minimum pressure differential			bar	18			
Pressure stable up to Δp = 315 l	bar / 210 bar		%	±3 (q _{V max}	()		
Flow		$q_{ m V\;max}$	l/min	6	16	32	60
		$q_{ m Vmin}$	cm³/min	50	150	250	500
Hydraulic fluid				See table	below		
Hydraulic fluid temperature rang	ge	θ	°C	C –20 +80 (FKM seal)			
Viscosity range		ν	mm²/s	10 800			
Maximum admissible degree of contamination of hydraulic fluid (cleanliness level) according to ISO 4406 (c)				Level 20/	18/15 ²⁾		

Notice

For applications outside these values, please consult us!

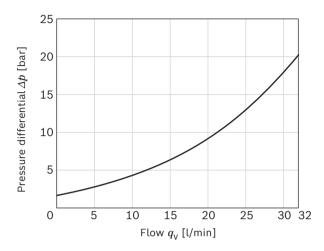
Hydraulic fluid

Hydraulic fluid		Classification	Suitable sealing materials	Standards	Data sheet
Mineral oils		HL, HLP	FKM	DIN 51524	90220
Environmentally	Insoluble in water	HEES	FKM	ISO 15380	90221
acceptable	Soluble in water	HEPG	FKM	ISO 15380	90221

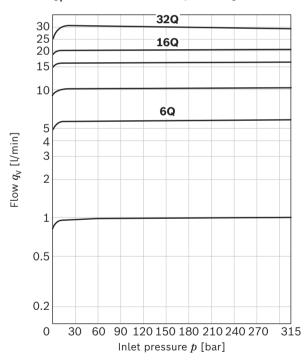
Notice

- ► Further information and details on using other hydraulic fluids are available in the above data sheets or on request.
- ► Restrictions are possible with the technical valve data (temperature, pressure range, service life, maintenance intervals, etc.).
- ► The flash point of the hydraulic fluid used must be 40 K above the maximum solenoid surface temperature.
- ► Environmentally acceptable: If environmentally acceptable hydraulic fluids are used that are also zinc-dissolving, there may be an accumulation of zinc.

For the selection of the filters see www.boschrexroth.com/filter. We recommend using a filter with a minimum retention rate of $\beta_{10} \geqq 75.$

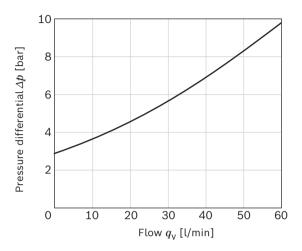

¹⁾ The minimum pressure differential between A and B must be between 10 and 25 bar, depending on the nominal size.

²⁾ The cleanliness classes stated for the components has to be maintained in hydraulic systems. Effective filtration prevents faults and at the same time increases the service life of the components.

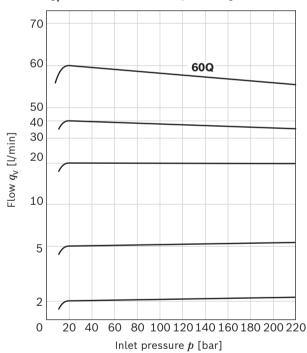

Characteristic curves

Size 6

▼ $\Delta p - q_{\sqrt{}}$ -characteristic curve via the check valve (B \rightarrow A) Orifice closed



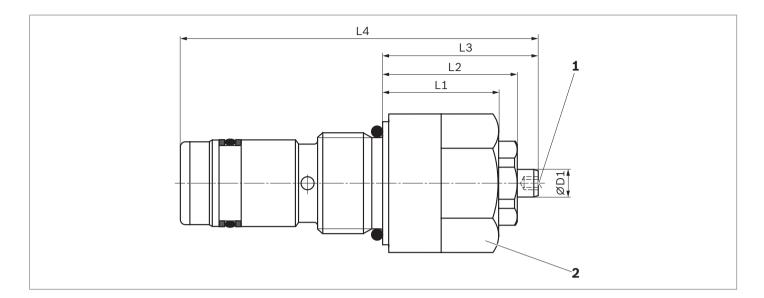
▼ Flow $q_{\scriptscriptstyle \vee}$ in relation to the inlet pressure p



Size 10

▼ Δp - q_{\lor} -characteristic curve via the check valve (B \to A) Orifice closed

lacktriangledown Flow $q_{\scriptscriptstyle ee}$ in relation to the inlet pressure p

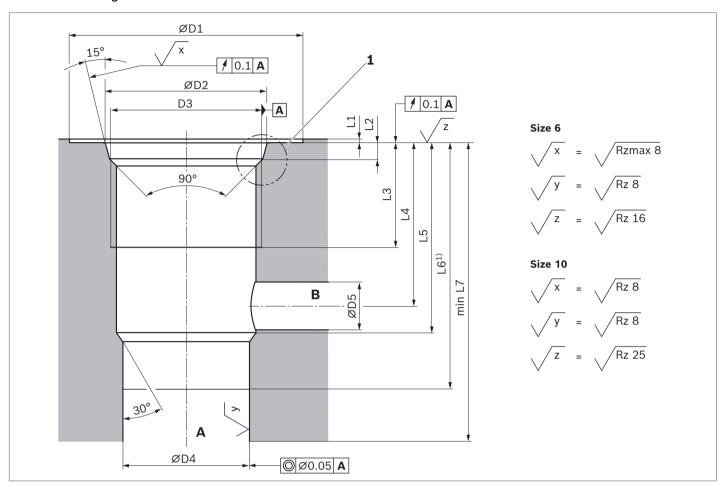


Notice

Characteristic curves measured with HLP46, $\vartheta_{\rm oil}$ = 40±5 °C.

Dimensions

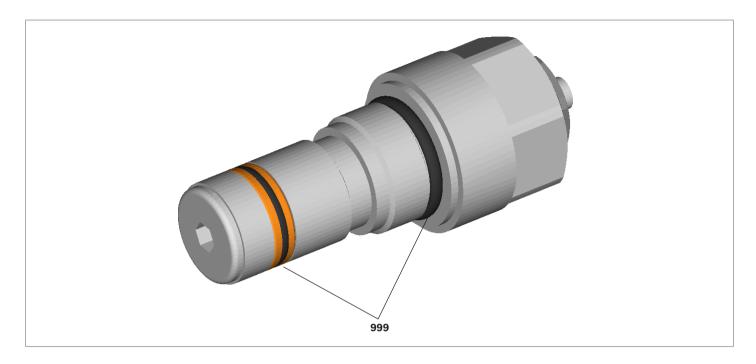
6



- 1 Internal hexagon SW3
- 2 External hexagon
 - Size 6: WAF27; $M_{\rm A}$ = 40 Nm
 - Size 10: WAF41; M_A = 120 Nm

Size	L1	L2	L3	L4	ØD1
6	25	29	33.5	77	6
10	36	41	45.5	109	6

Mounting cavity


▼ Version according to DIN ISO 7789

1 According to DIN 3852-W

Size	L1	L2	L3	L4	L5	L6 ¹⁾	L7	ØD1	ØD2	D3	ØD4	ØD5
6	0.5	2.4+0.4	17	24_4	28±0.1	38.5	45+0.2	34	23.8±0.1	M22 × 1.5	19H7	7
10	0.5	3.1+0.4	23	32_4	39+0.4	55	65	46	35.4±0.1	M33 × 2	29H8	11

Available individual components

Item	Designation	Sealing material	Material number
999	Seal kit of the valve for size 6	FKM	R961000741
	Seal kit of the valve for size 10	FKM	R961000742

Related documentation

► Electronic controls:

- Analog amplifier Type RA... Da

- BODAS controller Type RC...

► Mineral oil-based hydraulic fluids

► Environmentally acceptable hydraulic fluids

▶ Filter selection

► MTTF_D values

Data sheet 95230

Data sheet 95204, 95205, 95206

Data sheet 90220

Data sheet 90221

www.boschrexroth.com/filter

Data sheet 90294

Bosch Rexroth AG

Zum Eisengießer 1 97816 Lohr am Main Germany Tel. +49 9352 18-0 info.ma@boschrexroth.de www.boschrexroth.com © Bosch Rexroth AG 2022. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights. The data specified within only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.