Electric Drives and Controls Hydraulics Linear Motion and Assembly Technologies Pneumatics Service Rexroth Bosch Group # Δp/Q controller **RE 30136/07.12** Replaces: 05.04 **1**/16 ## Type VT-VACAF Component series 1X ## **Table of contents** #### Contents Features Ordering code, accessories Front plate Block diagram with pin assignment Wiring diagram with valve amplifier card Wiring diagram - Valve with installed electronics Technical data Functional principle Additional information Examples Function Settings DIL switch Commissioning and adjustment Adjustment protocol Device dimensions Project planning / maintenance instructions / additional information # Page - Suitable for controlling high-response valves - Amplifier with additional electronics (daughter card) - 2 Analog amplifiers in Europe format for installation 2 in 19 " racks - Pressure differential controller (force controller) with PID behavior - 4 Short-circuit-proof outputs **Features** - External shut-off for pressure controller - Monitor signal for controller - Separate acceleration and braking ramp - Ramps can be separately adjusted and switched off - Adjustable area adjustment for cylinder - Suitable for pressure sensors (0...10 V, 4...20 mA), see data sheet 30271 - 12 Supply for pressure sensors - 15 Cable break detection for pressure sensor 16 16 #### Notice: The photo is an example configuration. The delivered product differs from the figure. VT-VACAF | RE 30136/07.12 ## Ordering code, accessories ## **Preferred types** | Amplifier type | Material number | | | |--------------------|-----------------|--|--| | VT-VACAF-500-10/V0 | 0811405147 | | | #### Suitable card holder: Open card holder VT 3002-1-2X/32F (see data sheet 29928). Only for control cabinet installation. # Front plate **3**/16 RE 30136/07.12 | VT-VACAF Hydraulics | Bosch Rexroth AG # Block diagram with pin assignment ### VT-VACAF | RE 30136/07.12 # Wiring diagram with valve amplifier card Hydraulics | Bosch Rexroth AG **5**/16 # Wiring diagram - Valve with installed electronics VT-VACAF | RE 30136/07.12 # **Technical data** (For applications outside these parameters, please consult us!) | Supply voltage | | Nominal 24 V = | |---|----|---| | $U_{\rm B}$ at z2 – b2 | | Battery voltage 2140 V, | | OB at ZE DE | | Rectified alternating voltage $U_{\text{eff}} = 2128 \text{ V}$ | | | | (one-phase, full-wave rectifier) | | Smoothing capacitor, separately | | Recommendation: Capacitor module VT 11110 (see data sheet 30750) | | at z2 – b2 | | (only necessary if the ripple of $U_{\rm B} > 10\%$) | | Current consumption, max. | mΑ | 250 | | Command value Q | | b20: 0±10 V } Differential amplifier | | | | 220. U±10 V | | | | $(R_i = 100 \text{ k}\Omega)$ | | Command value p_{diff} | | z10: 0±10 V } Differential amplifier | | Actual value from the process concer | | Z12: U V | | Actual value from the pressure sensor | Α | b26: 0+10 V b28: 0 V Differential amplifier | | | | b24: ——— | | | | b30: ← 420 mA | | _ | В | b16: 0+10 V Differential amplifier | | | | b18: 0 V | | | | b14: | | | | b30: ← 420 mA | | Pressure sensor supply | | z6: +15 V, max. 100 mA | | Pressure controller OFF | | z8: –15 V, max. 100 mA
b10: 640 V = | | External controller enquiry | | z24: 24 V/0.1 A max., if controller is not active | | <u> </u> | | · | | Signal source | | Supply ±10 V from b32, z32 (10 mA) or external signal source z16: ±10 V | | Monitor signal F _{actual} | | | | Error pressure sensor (cable break, signal lines) | | b22: No error: +U _B ; max. 100 mA
Error: 0 V | | (dable break, signal intes) | | : LED"Ramp A OFF" and | | | | "Ramp B OFF" flash | | Ramp times | | Min. 350 ms (1) | | | | Max. 5.6 s (16) | | Ramp OFF | Α | z22: 840 V = | | | В | | | Area adjustment cylinder | | Min. 1:1 (1) } 16 steps | | 150 % | | Max. 1:4 (16) | | LED displays | | red: Error U _B | | | | red: Ramp A OFF red: Ramp B OFF | | | | green/yellow: | | | | green: Controller active | | | | yellow: Controller not active | | | | off: Controller OFF | | Format of the printed circuit board | mm | (100 x 160 x approx. 35) / (W x L x H) | | | | Europe format with front plate 7 TE | | Plug-in connection | | Connector DIN 41612 – F32 | | Ambient temperature | °C | 0+70 | | Storage temperature range | °C | -20+70 | | Storage temperature range | | | Power zero b2 and control zero b12 or b14 or z28 must be separately led to the central ground (neutral point). Hydraulics | Bosch Rexroth AG **7**/16 ## **Functional principle** #### Force control ### **Additional information** ## **Applications** As opposed to p/Q control, pressure measurement in the A and B line of a hydraulic actuator by means of the "Pressure differential controller" printed circuit board can be used to allow for $\Delta p/Q$ control of the actuator. Consequently, this control structure is used everywhere where you don't only have to control the pressure in one direction of motion of the actuator against a constant pressure but where there is also pressure control against a changing pressure, i.e. in all cases, in which force control is necessary. The actual value adjustment allows for the connection of pressure sensors with 0...10 V and 4...20 mA output signal. The command value ramps allow for the design of command value steps of $\Delta p_{\rm command}$ as ramp function. The error monitoring logic detects cable break of the signal lines of the sensors and errors in the voltage supply. The pressure control circuit can also be switched off externally (flow control). To control the actuator, this printed circuit board is to be coupled with a valve amplifier card or a valve with installed electronics. VT-VACAF | RE 30136/07.12 # **Examples** Example 1 Welding machine # Example 2 Vehicle twisting test stand Hydraulics | Bosch Rexroth AG **9**/16 ### **Function** Input variables are the differential pressure Δp and flow Q command values. As actual values, pressure differential and valve spool path are fed back. The $\Delta p/Q$ controller takes effect: - a) As long as $\Delta p_{\rm command} > \Delta p_{\rm actual}$ like a flow control, i.e. the pressure control does not yet take effect; - b) If $\Delta p_{\text{command}} = \Delta p_{\text{actual}}$, the pressure control takes effect, i.e. a limiter superimposes the command value Q. The command value Q corresponds to the spool path as long as the pressure control does not take effect, yet, i.e. $\Delta p_{\rm command} > \Delta p_{\rm actual}$ or if the pressure controller is switched off. The command value Q may range between $U_{\rm E} = 0...\pm 10$ V. #### **Functional examples** | Q _{command} | Direction | P _{diff. command} | Direction | Track traveling | Force control | |----------------------|--------------------|----------------------------|--------------------|------------------------------------|---| | +5.0 V | | +3.5 V | | with 50% <i>v</i> _{max} . | After track traveling to 35% of $p_{\text{diff. max.}}$ | | +7.5 V | | -2.0 V | | with 75% <i>v</i> _{max.} | Not possible | | -3.3 V | | -4.8 V | | with 33% <i>v</i> _{max.} | After track traveling to 48% of $p_{\text{diff. max.}}$ | | -10.0 V | | +8.0 V | | with v _{max} . | Not possible | | V | A command value of | of at least ±0.3 V | must be specified! | | | The numerical values listed in the table are examples, the signs of the values are decisive. VT-VACAF | RE 30136/07.12 # **Settings DIL switch** | DIL no. | Status | Fund | etion | | | | | |---------|--------|--------------------|--|------------|--|--|--| | 0 | ON | Exte | External ramp control possible | | | | | | | OFF | + p _{dif} | _{ff. command} via ramp | ⊣ A | | | | | 1 | ON | | 120 mA pressure sensors | | | | | | | OFF | 010 | 0 V pressure sensors | | | | | | 2 | ON | Exte | rnal ramp control possible | _ | | | | | | OFF | + p _{dif} | _{ff. command} via ramp | В | | | | | 3 | ON | | e break detection <i>p</i> sensor ON | | | | | | | OFF | Cabl | e break detection OFF | | | | | | 4 | ON | Exte | rnal controller shut-off possible | | | | | | | OFF | Exte | rnal controller shut-off not possible | | | | | | 5 | ON/OFF | Inver | rsion of the hydraulic direction of action | | | | | | | | → +(| Q _{Command} must extend the cylinder | | | | | | 6 | OFF | | Switch combinations, | | | | | | 7 | OFF | ē | see table 1 | | | | | | 8 | OFF | share | | | | | | | 9 | OFF | | | | | | | | 10 | OFF | | | | | | | | 11 | OFF | | Switch combinations, | | | | | | 12 | ON | | see table 2 | | | | | | 13 | OFF | share | | | | | | | 14 | ON | PS | Reduced pressure decrease with $p_{\text{diff. actual}} > p_{\text{diff. command}}$ Valve opening max. 20% | | | | | | | OFF | | No reduced pressure reduction | | | | | | 15 | ON | share | Switch combinations, see table 3 | | | | | | 16 | OFF | Isha | | | | | | Hydraulics | Bosch Rexroth AG 11/16 #### Table 1 Using the DIL switches 6 \dots 10, the setting of the hex switch $\rm K_{\rm D}$ (front plate) can be reduced. The setting can be reduced in a direction-dependent form. Step 1 is the lowest, step 8 the highest reduction. | | K_{D} | | | | | | |------|-----------|----------|---------|-------|--------|---------------------------| | | DIL 6 | DIL 7 | DIL 8 | DIL 9 | DIL 10 | Effect | | | OFF | OFF | OFF | OFF | OFF | No influence on the | | | OFF | OFF | ON | OFF | OFF | hex switch K _D | | | OFF | ON | OFF | OFF | OFF | | | | OFF | ON | ON | OFF | OFF | | | | ON | OFF | OFF | OFF | OFF | | | | ON | OFF | ON | OFF | OFF | | | | ON | ON | OFF | OFF | OFF | | | | ON | ON | ON | OFF | OFF | | | 1 | OFF | OFF | OFF | OFF | ON | Direction 1 | | | OFF | OFF | OFF | ON | OFF | Direction 2 | | | OFF | OFF | OFF | ON | ON | Direction 1 + 2 | | 2 | ON | OFF | OFF | OFF | ON | Direction 1 | | | ON | OFF | OFF | ON | OFF | Direction 2 | | | ON | OFF | OFF | ON | ON | Direction 1 + 2 | | 3 | OFF | ON | OFF | OFF | ON | Direction 1 | | | OFF | ON | OFF | ON | OFF | Direction 2 | | | OFF | ON | OFF | ON | ON | Direction 1 + 2 | | 4 | ON | ON | OFF | OFF | ON | Direction 1 | | | ON | ON | OFF | ON | OFF | Direction 2 | | | ON | ON | OFF | ON | ON | Direction 1 + 2 | | 5 | OFF | OFF | ON | OFF | ON | Direction 1 | | | OFF | OFF | ON | ON | OFF | Direction 2 | | | OFF | OFF | ON | ON | ON | Direction 1 + 2 | | 6 | ON | OFF | ON | OFF | ON | Direction 1 | | | ON | OFF | ON | ON | OFF | Direction 2 | | | ON | OFF | ON | ON | ON | Direction 1 + 2 | | 7 | OFF | ON | ON | OFF | ON | Direction 1 | | | OFF | ON | ON | ON | OFF | Direction 2 | | | OFF | ON | ON | ON | ON | Direction 1 + 2 | | 8 | ON | ON | ON | OFF | ON | Direction 1 | | | ON | ON | ON | ON | OFF | Direction 2 | | | ON | ON | ON | ON | ON | Direction 1 + 2 | | Dire | otion 1 4 | force re | dustion | | | | Direction 1 ≜ force reduction Direction 2 ≜ force build-up VT-VACAF | RE 30136/07.12 #### Table 2 | DIL 11 | DIL 12 | DIL 13 | Effect | |--------|--------|--------|--------------------------| | OFF | OFF | OFF | No gain reduction to hex | | OFF | OFF | ON | switch K _P | | | | | | | ON | OFF | ON | Low gain | | OFF | ON | OFF | Medium gain | | ON | ON | OFF | | | ON | OFF | OFF | High gain | | ON | ON | ON | Forbidden | | OFF | OFF | OFF | | #### Table 3 | DIL 15 | DIL 16 | Effect | |--------|--------|---| | OFF | OFF | No influence on the hex switch K _I | | OFF | ON | I share = 0 | | ON | ON | | | ON | OFF | I max. (≜ K _I = 16) + K _I current | # Commissioning and adjustment ## General notes: Setting during the commissioning is effected using potentiometers and HEXCODE switches on the front plate as well as using DIL switches on the printed circuit board. Test points for voltage measurements as well as LED displays are located on the front plate. The measured values generally refer to the test point 0 V. The test points may only be loaded with measuring devices $R_{\rm l} \ge 10~{\rm k}\Omega$. Overload impairs the control function and/or the printed circuit board is damaged. Before the commissioning, the basic settings of the as-delivered state are to be checked. In the card adjustment, proceed in the order of the points shown (see page 13). **13**/16 #### VT-VACAF | RE 30136/07.12 Hydraulics | Bosch Rexroth AG 15/16 # **Adjustment protocol** Created by Date | Switches | As-delivered state | |--------------------|--------------------| | DIL 0 | ON | | DIL 1 | ON | | DIL 2 | ON | | DIL 3 | ON | | DIL 4 | OFF | | DIL 5 | ON | | DIL 6 | OFF | | DIL 7 | OFF | | DIL 8 | OFF | | DIL 9 | OFF | | DIL 10 | OFF | | DIL 11 | OFF | | DIL 12 | ON | | DIL 13 | OFF | | DIL 14 | ON | | DIL 15 | OFF | | DIL 16 | ON | | ΗΕΧ α | 3 | | нех в | 3 | | НЕХ ү | 3 | | ΗΕΧ δ | 3 | | HEX K _P | 1 | | HEX K _I | 1 | | HEX K _D | 1 | VT-VACAF | RE 30136/07.12 ## Device dimensions (dimensions in mm) # Project planning / maintenance instructions / additional information - The amplifier card may only be unplugged and plugged when de-energized. - The distance to aerial lines, radios and radar systems must be sufficient (> 1 m). - Do not lay solenoid and signal lines near power cables. - For signal lines and solenoid conductors, we recommend using shielded cables. The cable shield must be connected to the control cabinet extensively and as short as possible. - The valve solenoid must not be connected to free-wheeling diodes or other protection circuits.