RE 92500/2023-05-11 Replaces: 2023-01-19 # Axial piston variable pump A11V(L)O series 1x - ► All-purpose high pressure pump - ▶ Size 40 to 260 - ▶ Nominal pressure 350 bar - ► Maximum pressure 400 bar - Open circuit #### **Features** - ► Through-drive for mounting of further pumps up to same size - ▶ Optional with charge pump for sizes 130 to 260 - ► Higher speeds are possible for the version with charge pump (A11VLO) - ► Large variety of controls - Swashplate design - ► Compact design - ▶ High efficiency - ► High power density #### Contents | Type code | 2 | |---|----| | Hydraulic fluid | 5 | | Working pressure range | 7 | | Technical data | 8 | | Power controller | 11 | | Pressure controller | 22 | | Hydraulic control, pilot-pressure related | 26 | | Electrical control with proportional solenoid | 28 | | Dimensions, size 40 | 32 | | Dimensions, size 60 | 36 | | Dimensions, size 75 | 40 | | Dimensions, size 95 | 44 | | Dimensions, size 130/145 | 48 | | Dimensions, size 190 | 52 | | Dimensions, size 260 | 57 | | Dimensions, through-drive | 62 | | Overview of mounting options | 65 | | Combination pumps A11V(L)O + A11V(L)O | 66 | | Swivel angle indicator | 67 | | Connector for solenoids | 69 | | Installation instructions | 70 | | Project planning notes | 74 | | Safety instructions | 75 | 2 A11V(L)O series 1x | Axial piston variable pump Type code # Type code | 01 | 02 | 03 | 04 | | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | | 15 | |------|----|----|----|---|----|----|----|----|----|----|----|----|----|----|---|----| | A11V | | | | / | | | | N | | | 12 | | | | - | | #### Axial piston unit | 01 Swashplate design, variable, nominal pressure 350 bar, maximum pressure 400 bar | 1 | A11V | Ĺ | |--|---|------|---| |--|---|------|---| | Oper | ating mode | | 40 | 60 | 75 | 95 | 130 | 145 | 190 | 260 | | |------|--------------------|---------------------|----|----|----|----|-----|-----|-----|-----|----| | 02 | Pump, open circuit | without charge pump | • | • | • | • | • | • | • | • | 0 | | | | with charge pump | _ | - | _ | _ | • | • | • | • | LO | # Size (NG) | 03 Geometric displacement, see technical data on page 8 40 60 75 95 130 145 190 26 | |--| |--| | rol device1) | | | | | 40 | 60 | 75 | 95 | 130 | 145 | 190 | 260 | | |--------------------------|-------------------|----------------------------|---|---------------------|----|----------|----|----|-----|-----|-----|-----|-----| | Power controlle | er | fixed setting | | | • | • | • | • | • | • | • | • | LI | | with override | | cross sensing | negative control | | • | • | • | • | • | • | • | • | LR | | | | high pressure
dependent | negative control | | • | • | • | • | • | • | • | • | LF | | | | pilot-pressure related | negative control | | • | • | • | • | • | • | • | • | LC | | | | | positive control | | • | • | • | • | • | • | • | • | LC | | | | electric | negative control | U = 24 V | • | • | • | • | • | • | • | • | LI | | with pressure | e cut-off | | | | • | • | • | • | • | • | • | • | L.I | | | | hydraulic remote contr | rolled | | • | • | • | • | • | • | • | • | L | | with load sen | nsing | | | | • | • | • | • | • | • | • | • | L. | | | | electric proportional o | verride | U = 24 V | • | • | • | • | • | • | • | • | L | | | | hydraulic proportional | override | | - | - | - | • | • | • | • | • | L | | with hydrauli | С | negative control | | Δp = 25 bar | • | • | • | • | • | • | • | • | L | | stroke limiter | | positive control | | Δp = 25 bar | • | • | • | • | • | • | • | • | L | | with electric | | positive control | | • | • | • | • | • | • | • | • | L | | | stroke limiter | - | <i>U</i> = 24 V | with manual override and spring return | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | L | | Pressure contro | oller | | | | • | • | • | • | • | • | • | • | D | | | | with load sensing | | | • | • | • | • | • | • | • | • | DI | | | | hydraulic remote contr | rolled | | • | • | • | • | • | • | • | • | DF | | | | for parallel operation | | | • | • | • | • | • | • | • | • | DI | | Hydraulic contr | ol, | positive control | | Δp = 25 bar | • | • | • | • | • | • | • | • | н | | pilot-pressure r | elated | | with pressure cut-off | Δp = 25 bar | • | • | • | • | • | • | • | • | HD | | Electrical contr | ol | positive control | | | • | • | • | • | • | • | • | • | EI | | with proportion solenoid | rith proportional | <i>U</i> = 24 V | with manual override and spring return | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | EI | | | | | with pressure cut-off | | • | • | • | • | • | • | • | • | EP | | | | | with pressure cut-off,
hydraulic remote controller | d | • | • | • | • | • | • | • | • | ЕР | | | | | with pressure cut-off, | negative control | - | - | - | • | • | • | • | • | EP: | | | | | electric remote controlled | positive control | _ | <u> </u> | - | • | • | | • | • | EP: | • = Available • = On request - = Not available ¹⁾ The following combinations are not available with the power controller: LRDS2, LRDS5, L...GS, L...GS2, L...GS5 and the combination L...DG in conjunction with the stroke limiters H1, H2, H5, U2, U6. 3 Axial piston variable pump | **A11V(L)O series 1x**Type code | | 01 | 02 | 03 | 04 | | 05 | 06 | 07 | 08 | 09 | 10 | 1 | 11 | 12 | | 13 | 14 | | | 15 | |-------|-----------|----------------------|-----------|------------------------|-----------|----------|-----------|----------|--------|----|----|----|----|----|-----|-----|-----|-----|-----|----| | Α | \11V | | | | 1 | | | | N | | | 1 | 12 | | | | | | - | | | Serie | es | | | | | | | • | | | | | | | | | | | | | | 05 | 1 | | nde | x | 06 | | | | | | Size | 40 13 | 0 | | | | | | | | | | | | 0 | | | | | | | | Size | 145 2 | 60 | | | | | | | | | | | | 1 | | Direc | ction of | otation | 07 | Viewed | on driv | e shaft | | | clock | wise | | | | | | | | | | | | | R | | | | | | | | coun | ter-clock | wise | | | | | | | | | | | | L | | Seali | ing mate | rial | 80 | NBR (n | itrile rul | ober), sl | naft seal | ring ma | de of FK | M (fluor | ocarbor | rubber |) | | | | | | | | | | N | | | FKM (fl | uorocar | bon rub | ber) | | | | | | | | | | | | | | | | V | | Drive | shaft | | | | | | | | | | | 40 | 60 | 75 | 95 | 130 | 145 | 190 | 260 | | | 09 | Splined | l shaft D | IN 5480 |) for sing | gle and c | ombina | ion pum | пр | | | | • | • | • | • | • | • | • | • | Z | | | Paralle | keyed : | shaft DII | N 6885 | | | | | | | | • | • | • | • | • | • | • | • | Р | | | Splined | l shaft A | NSI B92 | 2.1a - 197 | 6 | for si | ngle pur | mp | | | | • | • | • | • | • | • | • | • | S | | | | | | | | for c | ombinati | ion pum | р | | | • | • | • | _2) | _2) | _2) | • | • | Т | | Mour | nting fla | nge | | | | | | | | | | 40 | 60 | 75 | 95 | 130 | 145 | 190 | 260 | | | 10 | SAE J7 | 44 – 2-h | ole | | | | | | | | | • | • | - | - | _ | - | - | _ | С | | | SAE J7 | 44 – 4-h | ole | | | | | | | | | - | _ | • | • | • | • | • | • | D | | | SAE J6 | 17 ³⁾ (SA | Œ 3) | | | | | | | | | - | - | - | • | • | • | • | - | G | | Work | king port | <u> </u> | | | | | | | | | | 40 | 60 | 75 | 95 | 130 | 145 | 190 | 260 | | | 11 | | | | ion port | | | 9, | | | | | | | | | | | | | | | | | | | l accordi
h profile | | | od on D | INI 20E2 | | | | • | • | • | • | • | • | • | • | 12 | | | | | | ion port | | | | IIV 3032 | | | - | | | | | | _ | | | | | | | | | l accordi | | | =, | | | | | 0 | | | | • | • | | | 07 | | | 1 | | _ | profile se | 0 | | l on ISO | 11926 | | | | - | - | - | - | 1 | - | - | - | | • = Available • = On request - = Not available $^{{\}scriptstyle 2)} \ \ {\sf S-shaft\ suitable\ for\ combination\ pump!}$ ³⁾ Suitable for flywheel housing of the internal combustion engine 4 **A11V(L)O series 1x** | Axial piston variable pump Type code | 01 | 02 | 03 | 04 | | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | | 15 | |------|----|----|----|---|----|----|----|----|----|----|----|----|----|----|---|----| | A11V | | | | / | | | | N | | | 12 | | | Р | - | | | Th | roi | ıak | ١٨ | riv | | |----|-----|-----|----|-----|--| | Flange SAE J744 | Hub for s | plined shaft ⁴⁾ | | | | | | | | | | | |------------------------------|-----------|----------------------------|-------------|----|----|----|----|-----------------|-----------------|-----|-----|----| | Diameter | Diameter | | Designation | 40 | 60 | 75 | 95 | 130 | 145 | 190 | 260 | | | - | - | | | • | • | • | • | • | • | • | • | NO | | 82-2 (A) | 5/8 in | 9T 16/32DP | А | • | • | • | • | • | • | • | • | K0 | | | 3/4 in | 11T 16/32DP | A-B | • | • | • | • | • | • | • | • | K5 | | 101-2 (B) | 7/8 in | 13T 16/32DP | В | • | • | • | • | • | • | • | • | K0 | | | 1 in | 15T 16/32DP | B-B | • | • | • | • | • | • | • | • | K0 | | | W 35 × 2 | × 16 × 9g | · | • | • | • | • | 0 | 0 | • | • | K7 | | 127-2/-2+4 (C) ⁵⁾ | 1 1/4 in | 14T 12/24DP | С | _ | • | • | • | • | • | • | • | K0 | | | 1 1/2 in | 17T 12/24DP | C-C | - | _ | - | • | • | • | • | • | K2 | | | W 30 × 2 | × 14 × 9g | | - | • | • | • | ● ⁶⁾ | ● ⁶⁾ | • | • | K8 | | | W 35 × 2 | × 16 × 9g | | - | • | • | • | • | • | • | • | K6 | | 152-4 (D) | 1 1/4in | 14T 12/24DP | С | - | - | • | • | • | • | • | • | К8 | | | 1 3/4 in | 13T 8/16DP | D | - | - | - | - | • | • | • | • | K1 | | | W 40 × 2 | × 18 × 9g | | - | - | • | • | • | • | • | • | К8 | | | W 45 × 2 | × 21 × 9g | | - | - | - | • | • | • | • | • | К8 | | | W 50 × 2 | × 24 × 9g | | - | - | - | - | • | • | • | • | К8 | | 165-4 (E) |
1 3/4 in | 13T 8/16DP | D | - | - | - | - | - | - | • | • | К7 | | | W 50 × 2 | × 24 × 9g | | - | _ | - | - | - | - | • | • | К8 | | | W 60 × 2 | × 28 × 9g | | _ | _ | _ | _ | _ | _ | _ | • | К6 | | Swi | vel angle indicator | 40 | 60 | 75 | 95 | 130 | 145 | 190 | 260 | | |-----|---|----|----|----|----|-----|-----|-----|-----|---| | 13 | without swivel angle indicator (without code) | • | • | • | • | • | • | • | • | | | | with optical swivel angle indicator | • | - | • | • | • | • | • | • | V | | | with electric swivel angle sensor | • | - | • | • | • | • | • | • | R | | Conn | ector for solenoids | | 40 | 60 | 75 | 95 | 130 | 145 | 190 | 260 | | | |------|--------------------------|---------------------------------|----|----|----|----|-----|-----|-----|-----|---|---| | 14 | DEUTSCH connector molded | 2-pin, without suppressor diode | • | • | • | • | • | • | • | • | Р | ١ | # Standard/special version | 15 | Standard version (without code) | | |----|---------------------------------|---| | | Special version | S | | | Installation variant | Y | • = Available • = On request - = Not available ^{4) 2 ≜ 2-}hole; 4 ≜ 4-hole $_{\rm 5)}$ NG190 and NG260 with 2 + 4 hole flange $_{\rm 6)}\,$ Not available for version with charge pump Axial piston variable pump | **A11V(L)O series 1x** Hydraulic fluid 5 # **Hydraulic fluid** The axial piston unit is designed for operation with HLP mineral oil according to DIN 51524. Application instructions and requirements for hydraulic fluid selection, behavior during operation as well as disposal and environmental protection should be taken from the following data sheets before the start of project planning: - 90220: Hydraulic fluids based on mineral oils and related hydrocarbons - ▶ 90221: Environmentally acceptable hydraulic fluids - 90223: Fire-resistant, water-containing hydraulic fluids (HFC/HFB/HFAE/HFAS) #### Selection of hydraulic fluid Bosch Rexroth evaluates hydraulic fluids on the basis of the Fluid Rating according to the technical data sheet 90235. Hydraulic fluids with positive evaluation in the Fluid Rating are provided in the following technical data sheet: ▶ 90245: Bosch Rexroth Fluid Rating List for Rexroth hydraulic components (pumps and motors) Selection of hydraulic fluid shall make sure that the operating viscosity in the operating temperature range is within the optimum range ($\nu_{\rm opt}$; see selection diagram). #### Viscosity and temperature of hydraulic fluids | | Viscosity | Shaft seal | Temperature ³⁾ | Remarks | |---------------|--|-------------------|---------------------------|---| | Cold start | $v_{\text{max}} \leq 1600 \text{ mm}^2/\text{s}$ | NBR ²⁾ | θ _{St} ≥ −40 °C | $t \le 3$ min, without load ($p \le 50$ bar), $n \le 1000$ rpm | | | | FKM | ϑ _{St} ≥ −25 °C | Permissible temperature difference between axial piston unit and hydraulic fluid in the system maximum 25 K | | Warm-up phase | $v = 1600 \dots 400 \text{ mm}^2/\text{s}$ | | | $t \le 15 \text{ min}, p \le 0.7 \times p_{\text{nom}} \text{ and } n \le 0.5 \times n_{\text{nom}}$ | | Continuous | $v = 400 \dots 10 \text{ mm}^2/\text{s}^{1)}$ | NBR ²⁾ | θ ≤ +85 °C> | Measured at port T | | operation | | FKM | θ ≤ +110 °C> | | | | $v_{\rm opt}$ = 36 16 mm ² /s | | | Optimal operating viscosity and efficiency range | | Short-term | $v_{min} = 10 7 \text{ mm}^2/\text{s}$ | NBR ²⁾ | θ ≤ +85 °C> | $t \le 3 \text{ min, } p \le 0.3 \times p_{\text{nom}}$, measured at port T | | operation | | FKM | θ ≤ +110 °C> | | #### ▼ Selection diagram ¹⁾ This corresponds, for example on the VG 46, to a temperature range of +4 °C to +85 °C (see selection diagram) ²⁾ Special version, please contact us ³⁾ If the temperature at extreme operating parameters cannot be adhered to, please contact us. 6 **A11V(L)O series 1x** | Axial piston variable pump Hydraulic fluid #### Filtration of the hydraulic fluid Finer filtration improves the cleanliness level of the hydraulic fluid, which increases the service life of the axial piston unit. A cleanliness level of at least 20/18/15 is to be maintained according to ISO 4406. At a hydraulic fluid viscosity of less than 10 mm²/s (e.g. due to high temperatures during short-term operation) at the drain port, a cleanliness level of at least 19/17/14 according to ISO 4406 is required. For example, a viscosity of 10 mm²/s corresponds to the following temperatures with the following media: - ▶ HLP 32 a temperature of 73 °C - ▶ HLP 46 corresponds to a temperature of 85 °C #### **Case flushing** If a variable displacement pump with control device EP, HD or with stroke limiter (H1, H2, U2, U6) is operated for a longer period of time (t > 10 min) with zero flow or working pressure < 15 bar, housing flushing via the connections \mathbf{T}_1 , \mathbf{T}_2 or \mathbf{R} is required. | NG | 40 | 60 | 75 | 95 | 130 | 145 | 190 | 260 | |---------------------------|----|----|----|----|-----|-----|-----|-----| | $q_{ m V flush}$ (l/min) | 2 | 3 | 3 | 4 | 4 | 4 | 5 | 6 | The need for housing flushing is eliminated at the version with charge pump (A11VLO). #### Charge pump (impeller) The charge pump is a centrifugal pump with which the A11VLO is filled and therefore can be operated at higher rotational speeds. This also simplifies cold starting at low temperatures and high viscosity of the hydraulic fluid. Externally increasing the inlet pressure is therefore unnecessary in most cases. Charging the reservoir with compressed air is permissible at 2 bar absolute. 7 # Axial piston variable pump | **A11V(L)O series 1x**Working pressure range # **Working pressure range** | Pressure at port for working line A | | Definition | | | | | |---|---|---|--|--|--|--| | Nominal pressure p_{nom} | 350 bar | The nominal pressure corresponds to the maximum design pressure. | | | | | | Maximum pressure p_{max} 400 bar | | The maximum pressure corresponds to the maximum working pressure | | | | | | Single operating period | < 1 s | within a single operating period. The sum of single operating periods must | | | | | | Total operating period | 300 h | not exceed the total operating period. | | | | | | Minimum pressure $p_{\text{A absolute}}$ (high-pressure side) | see diagram
"Minimum pressure
(high-pressure side)" | Minimum pressure at the high-pressure side A which is required in order to prevent damage to the axial piston unit. | | | | | | Rate of pressure change $R_{ m A\ max}$ | 16000 bar/s | Maximum permissible speed of pressure build-up and reduction during a pressure change across the entire pressure range. | | | | | | Pressure at suction port S (inlet) | | | | | | | | Version without charge pump | | | | | | | | Minimum pressure p_{Smin} | ≥ 0.8 bar absolute | Minimum pressure at suction port S (inlet) which is required to prevent damage to the axial piston unit. The minimum pressure is dependent on the rotational speed and displacement of the axial piston unit (see diagram "Maximum permissible rotational speed" on page 9). | | | | | | Maximum pressure $p_{\text{S max}}$ | ≤ 30 bar absolute ¹⁾ | | | | | | | Version with charge pump | | | | | | | | Minimum pressure $p_{\text{S min}}$ | ≥ 0.6 bar absolute | Minimum pressure at suction port S (inlet) which is required to prevent damage to the axial piston unit. | | | | | | Maximum pressure $p_{\text{S max}}$ | ≤ 2 bar absolute | | | | | | | Case pressure at port T ₁ , T ₂ | | | | | | | | Maximum case pressure $p_{\rm Tmax}$ | 2 bar | Measured at port T_1 , T_2
Maximum 1.2 bar higher than inlet pressure at port S , but not higher than $p_{T \max}$.
A drain line to the reservoir is required. | | | | | #### ▼ Minimum pressure (high-pressure side) # ▼ Pressure definition Total operating period = $t_1 + t_2 + ... + t_n$ # Notice - Working pressure range applies when using hydraulic fluids based on mineral oils. Please contact us for values for other hydraulic fluids. - ► The case pressure must be greater than the external pressure (ambient pressure) at the shaft seal. ^{1) &}gt; 5 bar, please contact us 8 **A11V(L)O series 1x** | Axial piston variable pump Technical data #### **Technical data** #### Without charge pump (A11VO) | Size | | NG | | 40 | 60 | 75 | 95 | 130 | 145 | 190 | 260 | |--------------------|---|-----------------------------|------------------|--------|--------|--------|--------|--------|--------|--------------------|--------| | Geometric displace | ement, | $V_{ m g\ max}$ | cm ³ | 42.0 | 58.5 | 74.0 | 93.5 | 130.0 | 145.0 | 193.0 | 260.0 | | per revolution | | $V_{g\;min}$ | cm ³ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Maximum | at $V_{\mathrm{g\;max}}$ 1) | n_{nom} | rpm | 3000 | 2700 | 2550 | 2350 | 2100 | 2200 | 2100 | 2000 | | rotational speed | at $V_{\rm g} \leq V_{\rm g max}^{3)}$ | $n_{\sf max}$ | rpm | 3500 | 3250 | 3000 | 2780 | 2500 | 2500 | 2100 ⁵⁾ | 2300 | | Flow | at n_{nom} and $V_{g\;max}$ | $q_{\scriptscriptstyle ee}$ | l/min | 126 | 158 | 189 | 220 | 273 | 319 | 405 | 468 | | Power | at n_{nom} , $V_{\text{g max}}$ and Δp = 350 bar | P | kW | 74 | 92 | 110 | 128 | 159 | 186 | 236 | 273 | | Torque | at $V_{\rm g max}$
and $\Delta p = 350 \rm bar^{2)}$ | M | Nm | 234 | 326 | 412 | 521 | 724 | 808 | 1075 | 1448 | | Rotary stiffness | Z | с | kNm/rad | 88.9 | 102.4 | 145.8 | 199.6 | 302.5 | 302.5 |
346.2 | 686.5 | | drive shaft | P | с | kNm/rad | 87.5 | 107.9 | 143.1 | 196.4 | 312.4 | 312.4 | 383.2 | 653.8 | | | S | с | kNm/rad | 58.3 | 86.3 | 101.9 | 173.7 | 236.9 | 236.9 | 259.8 | 352.0 | | | Т | c | kNm/rad | 74.5 | 102.4 | 125.6 | 148.3 | - | _ | 301.9 | 567.1 | | Moment of inertia | of the rotary group | $J_{\sf TW}$ | kgm ² | 0.0048 | 0.0082 | 0.0115 | 0.0173 | 0.0318 | 0.0341 | 0.055 | 0.0878 | | Maximum angular | acceleration ⁴⁾ | α | rad/s² | 22000 | 17500 | 15000 | 13000 | 10500 | 9000 | 6800 | 4800 | | Case volume | | V | L | 1.1 | 1.35 | 1.85 | 2.1 | 2.9 | 2.9 | 3.8 | 4.6 | | Weight (without th | rough-drive) approx. | m | kg | 32 | 40 | 45 | 53 | 66 | 67 | 95 | 125 | #### With charge pump (A11VLO) | Size | | NG | | 130 | 145 | 190 | 260 | |--|---|------------------------------------|------------------|--------|-------|--------|--------| | Geometric displacement, per revolution | | $V_{ m g\ max}$ | cm ³ | 130.0 | 145.0 | 193.0 | 260.0 | | | | $V_{ m g\ min}$ | cm ³ | 0 | 0 | 0 | 0 | | Maximum | at $V_{\rm g\; max}^{2)}$ | n_{nom} | rpm | 2500 | 2500 | 2500 | 2300 | | rotational speed | at $V_{\rm g} \leq V_{\rm g max}$ | $n_{\sf max}$ | rpm | 2500 | 2500 | 2500 | 2300 | | Flow | at n_{nom} and $V_{g\;max}$ | $q_{\scriptscriptstyle extsf{V}}$ | l/min | 325 | 363 | 483 | 598 | | Power | at n_{nom} , $V_{\text{g max}}$ and $\Delta p = 350$ bar | P | kW | 190 | 211 | 281 | 349 | | Torque | at $V_{\rm g max}$ and $\Delta p = 350 {\rm bar}^{2)}$ | M | Nm | 724 | 808 | 1075 | 1448 | | Rotary stiffness | Z | с | kNm/rad | 302.5 | 302.5 | 346.2 | 686.5 | | drive shaft | P | с | kNm/rad | 312.4 | 312.4 | 383.3 | 653.8 | | | S | с | kNm/rad | 236.9 | 236.9 | 259.8 | 352.0 | | | Т | с | kNm/rad | _ | _ | 301.9 | 567.1 | | Moment of inertia | of the rotary group | $J_{\sf TW}$ | kgm ² | 0.0337 | 0.036 | 0.0577 | 0.0895 | | Maximum angular | acceleration ⁴⁾ | α | rad/s² | 10500 | 9000 | 6800 | 4800 | | Case volume | | V | L | 2.9 | 2.9 | 3.8 | 4.6 | | Weight (without through-drive) approx. | | m | kg | 72 | 73 | 104 | 138 | | | | | | | | | | - 1) The values apply for an absolute pressure ($p_{\rm absolute}$) of 1 bar at suction port **S** and for operation with mineral operating fluid. - ²⁾ The values apply for an absolute pressure ($p_{\rm absolute}$) of at least 0.8 bar at suction port **S** and for operation with mineral operating fluid. - 3) The values apply at $V_{\rm g} \le V_{\rm g~max}$ or when the inlet pressure ($p_{\rm absolute}$) is increased at the suction port ${\bf S}$ (see diagram "Maximum permissible rotational speed" page 9) - 4) The scope of application lies between 0 and the maximum permissible rotational speed. It applies for external stimuli (e.g. diesel engine 2 to 8 times rotary frequency, cardan shaft 2 times rotary frequency). The limit value is only valid for a single pump. - The load capacity of the connection parts must be considered. - 5) Higher rotational speed possible with special version after consultation. #### Axial piston variable pump | A11V(L)O series 1x Technical data 9 #### Maximum permissible rotational speed of the A11VO (speed limit) $(p_{\text{absolute}} = \text{inlet pressure})$ Permissible rotational speed depending on inlet pressure $p_{ m absolute}$ and displacement volume $V_{ m g}/V_{ m g\ max}.$ Observe the max. rotational speed $n_{ m max}$ #### **Determination of the characteristics** $V_{\rm g} \times n \times \eta_{\rm v}$ [l/min] Flow 1000 $V_g \times \Delta p$ Torque [Nm] $20 \times \pi \times \eta_{hm}$ $2 \pi \times M \times n$ $q_{\vee} \times \Delta p$ Power [kW] 60000 $600 \times \eta_t$ Key V_{g} Δp Displacement per revolution [cm3] Differential pressure [bar] Rotational speed [rpm] Volumetric efficiency η_{\vee} Hydraulic-mechanical efficiency η_{hm} Total efficiency $(\eta_{\rm t} = \eta_{\rm v} \times \eta_{\rm hm})$ #### Permissible radial and axial loading on the drive shafts | Size | | NG | | 40 | 60 | 75 | 95 | 130 | 145 | 190 | 260 | |----------------------|---------------------|-----------------------|----|------|------|------|------|-------|-------|-------|-------| | Maximum radial force | | $F_{q\;max}$ | N | 3600 | 5000 | 6300 | 8000 | 11000 | 11000 | 16925 | 22000 | | at distance a, b, c | F_{q} | a | mm | 17.5 | 17.5 | 20 | 20 | 22.5 | 22.5 | 26 | 29 | | (from shaft collar) | | $F_{q\;max}$ | N | 3891 | 4046 | 4950 | 6334 | 8594 | 8594 | 13225 | 16809 | | | | b | mm | 30 | 30 | 35 | 35 | 40 | 40 | 46 | 50 | | | a, b, c | F _{q max} | N | 2416 | 3398 | 4077 | 5242 | 7051 | 7051 | 10850 | 13600 | | | | С | mm | 42.5 | 42.5 | 50 | 50 | 57.5 | 57.5 | 66 | 71 | | Maximum axial force | laximum axial force | + Fax max | N | 1500 | 2200 | 2750 | 3500 | 4800 | 4800 | 6000 | 4150 | | | | - F _{ax max} | N | 1500 | 2200 | 2750 | 3500 | 4800 | 4800 | 6000 | 4150 | ### **Notice** - Theoretical values, without efficiency and tolerances; values rounded. - Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. Bosch Rexroth recommends testing the loads by means of experiment or calculation / simulation and comparison with the permissible values. - Special requirements apply in the case of belt drives. Please contact us. # 10 **A11V(L)O series 1x** | Axial piston variable pump Technical data #### Permissible input and through-drive torques | Size | | | NG | 40 | 60 | 75 | 95 | 130 | 145 | 190 | 260 | |--|------------------------------|---------------|----|----------|----------|----------|----------|----------|----------|----------|----------| | Torque at $V_{ m g\ max}$ and Δp | = 350 bar ¹⁾ | $M_{\sf max}$ | Nm | 234 | 326 | 412 | 521 | 724 | 808 | 1075 | 1448 | | Maximum input torque of | on drive shaft ²⁾ | | | | | | | | | | | | Р | | $M_{E\;max}$ | Nm | 468 | 648 | 824 | 1044 | 1448 | 1448 | 2226 | 2787 | | Sh | naft key DIN 6885 | | | Ø32 | Ø35 | Ø40 | Ø45 | Ø50 | Ø50 | Ø55 | Ø60 | | Z | | $M_{E\;max}$ | Nm | 912 | 912 | 1460 | 2190 | 3140 | 3140 | 3140 | 5780 | | DI | IN 5480 | | | W35 | W35 | W40 | W45 | W50 | W50 | W50 | W60 | | S | | $M_{E\;max}$ | Nm | 314 | 602 | 602 | 1640 | 1640 | 1640 | 1640 | 1640 | | AN | NSI B92.1a-1976 (SAE J | 744) | | 1 in | 1 1/4 in | 1 1/4 in | 1 3/4 in | | Т | | $M_{E\;max}$ | Nm | 602 | 970 | 970 | - | _ | _ | 2670 | 4070 | | AN | NSI B92.1a-1976 (SAE J | 744) | | 1 1/4 in | 1 3/8 in | 1 3/8 in | - | - | - | 2 in | 2 1/4 in | | Through-drive torque, m | aximum ³⁾ | $M_{D\;max}$ | Nm | 314 | 521 | 660 | 822 | 1110 | 1110 | 1760 | 2065 | # **▼** Distribution of torques | M_1 | |-------------------------| | M_2 | | M_3 | | $M_E = M_1 + M_2 + M_3$ | | M_E < M_{Emax} | | $M_D = M_2 + M_3$ | | M_D < M_{Dmax} | | | ¹⁾ Efficiency not considered ²⁾ For drive shafts free of radial force ³⁾ Note maximum input torque for shaft **S!** Axial piston variable pump | **A11V(L)O series 1x**Power controller #### 11 #### **Power controller** #### LR - Power controller, fixed setting The power controller regulates the displacement of the pump depending on the working pressure so that a given drive power is not exceeded at constant drive speed. The precise control with a hyperbolic characteristic curve, provides an optimum utilization of available power. The working pressure acts on a rocker via a measuring spool moved together with the control. An externally adjustable spring force counteracts this, it determines the power setting. The depressurized basic position is $V_{\rm g\ max}$. If the working pressure exceeds the set spring force, the control valve will be actuated by the rocker and the pump will swivel back from the basic position $V_{\mathrm{g\;max}}$ toward $V_{\mathrm{g\;min}}.$ Here, the leverage at the rocker may be shortened and the working pressure may rise in the same relation as the displacement is reduced $(p_{B} \times V_{g} = constant; p_{B} = working pressure;$ The hydraulic output power (characteristic curve LR) is influenced by the efficiency of the pump. Setting range for beginning of control 50 to 350 bar When ordering, state in plain text: ► Drive power P [kW] $V_{\rm g}$ = displacement). - ightharpoonup Drive speed n [rpm] - ▶ Maximum flow $q_{\text{V max}}$ [l/min] Please contact us if you need a performance chart. #### ▼ Characteristic curve LR #### ▼ Circuit diagram NG 40 to 145 #### ▼ Circuit diagram NG 190 to 260 # 12 **A11V(L)O series 1x** | Axial piston variable pump Power controller #### LRC - Override with cross sensing Cross sensing is total capacity control (high-pressure-dependent) that connects two equally sized A11VO pumps with LRC controllers in power control. If one pump is operating at pressures below the set beginning of control, the unused drive power is available to the other pump, up to 100 % in borderline cases. A total drive power is thus distributed between two consumers according to demand. Freed-up power due to pressure cut-off or other overrides is not taken into account. #### Half-sided cross sensing function When using the LRC controller on the 1st pump (A11VO) and a power-controlled pump with through-drive and without cross-sensing, which is also mounted at the drive, the required power for the 2nd pump deducted from the settings of the 1st pump. The 2nd pump has priority in the total power setting. For design of the controller of the 1st pump, the size and the beginning of control of the power controller of the 2nd pump are required. #### ▼ Circuit diagram NG 40 to 145 # ▼ Circuit diagram NG 190 to 260 #### LR3 - High-pressure-dependent override The high-pressure-dependent power override is a total power control where the working pressure of a mounted fixed pump is applied to the power setting (port **Z**). Therefore, the A11VO can be
set to 100 % of the total drive power. The power setting of the A11VO is reduced proportionally to the load-dependent increase in the working pressure of the fixed pump. The fixed pump has priority in the total power setting. The measuring surface for the power reduction is adapted to the displacement of the fixed pump. #### ▼ Circuit diagram NG 40 to 145 # ▼ Circuit diagram NG 190 to 260 Axial piston variable pump | **A11V(L)O series 1x**Power controller 13 #### LG1/2 - Pilot-pressure related override An external pilot pressure acts on the setting spring of the power controller via port **Z**. The mechanically adjusted basic power setting can be varied by means of different pilot pressure settings. If the pilot pressure signal is adjusted by a load limiting control, the power reduction of all consumers is reduced to match the available power from the diesel engine. The pilot pressure for power influencing is generated by an external control element which is not part of the A11VO (e.g. BODAS LLC – Application software Load limiting control (data sheet 95312)). #### **LG1 Negative power override** With negative power override LG1, the force resulting from the pilot pressure counteracts the setting spring of the power controller. Higher pilot pressure = reduced power. Design recommendation for the control fluid requirement at ν = 10 mm²/s is 0.9 l/min for the LG1 function. ### ▼ Circuit diagram NG 40 to 145 # ▼ Circuit diagram NG 190 to 260 #### **LG2** Positive power override With positive power override LG2, the force resulting from the pilot pressure supports the setting spring of the power controller. Higher pilot pressure = increased power. Design recommendation for the control fluid requirement at ν = 10 mm²/s is 1.2 l/min for the LG2 function. #### ▼ Circuit diagram NG 40 to 145 #### ▼ Circuit diagram NG 190 to 260 # 14 **A11V(L)O series 1x** | Axial piston variable pump Power controller #### LE2 - Electrically proportional override (negative control) A control current acts against the adjustment spring of the power controller via a proportional solenoid. The mechanically adjusted basic power setting can be reduced by means of different control current settings. Increasing control current = reduced power. If the control current signal is variably controlled via a load limiting control, the power draw of all consumers is adjusted to the power draw possible for the diesel engine (e.g. BODAS LLC – Application software Load limiting control (data sheet 95312) in BODAS controller RC2-2). Direct current of 24 V (LE2) is required to control the proportional solenoid. | Technical data, solenoid | LE2 | | | | |---|--------------|--|--|--| | Voltage | 24 V (±20 %) | | | | | Control current | | | | | | Start of control | 200 mA | | | | | End of control | 600 mA | | | | | Current limit | 0.77 A | | | | | Nominal resistance (at 20 °C) | 22.7 Ω | | | | | Dither frequency | 100 Hz | | | | | Duty cycle | 100 % | | | | | Type of protection: see connector version page 69 | | | | | #### ▼ Effect of power override with increasing pressure or current #### ▼ Circuit diagram NG 40 to 145 #### ▼ Circuit diagram NG 190 to 260 Axial piston variable pump | **A11V(L)O series 1x**Power controller 15 #### LRD - With pressure cut-off The pressure cut-off is a pressure control which adjusts the displacement of the pump back to $V_{\rm g\ min}$ after reaching the set pressure command value. This function overrides the power controller, i.e. the power control function is executed below the pressure command value. The valve for pressure cut-off is integrated in the controller housing and is permanently set to a pressure command value at the factory. Setting range from 50 to 350 bar. #### **▼** Characteristic curve #### ▼ Circuit diagram NG 40 to 145 #### ▼ Circuit diagram NG 190 to 260 #### 16 A11V(L)O series 1x | Axial piston variable pump Power controller #### LRDS - With pressure cut-off and load sensing The load sensing controller works as a load-pressure controlled flow controller and adjusts the displacement of the pump to the volume required by the consumer. The flow of the pump is then dependent on the cross section of the external metering orifice (1), which is located between the pump and the consumer. Below the power curve and the setting of the pressure cut-off and within the control range of the pump, the flow is independent of the load pressure. The metering orifice is usually a separately located load sensing directional valve (control block). The position of the directional valve spool determines the opening cross-section of the metering orifice and thus the flow of the pump. The load sensing controller compares pressure before and after the metering orifice and keeps the pressure drop (differential pressure Δp) across the orifice and therefore the flow constant. If the differential pressure Δp at the metering orifice increases, the pump is swiveled back (towards $V_{\rm g\ min}$), if the differential pressure Δp decreases the pump is swiveled out (towards $V_{\rm g\ max}$), until equilibrium in the valve is restored. $\Delta p_{\text{metering orifice}} = p_{\text{pump}} - p_{\text{consumer}}$ The setting range for Δp is between 14 bar and 25 bar. The default setting is 18 bar (please specify in plain text). The stand-by pressure in zero-stroke operation (metering orifice plugged) is slightly above the Δp setting. In a standard LS system, the pressure cut-off is integrated in the pump controller. In an LUDV system, the pressure cut-off is integrated in the LUDV valve block. The metering orifice **1** (control block) is not included in the scope of delivery. Design recommendation for the control fluid requirement at ν = 10 mm^2/s is 3.7 l/min for the LS function. #### ▼ Characteristic curve #### ▼ Circuit diagram NG 40 to 145 #### ▼ Circuit diagram NG 190 to 260 Axial piston variable pump | **A11V(L)O series 1x**Power controller 17 #### LRS2 - With load sensing, electrically overridable By connecting a control current on a proportional solenoid, the differential pressure Δp of the load sensing control can be overridden proportionally. Increasing current = lower Δp setting. An example of this is shown in the characteristic curve below. Please consult us before carrying out project planning. For technical data of solenoid, see page 14 (LE2) #### **▼** Characteristic curve #### ▼ Circuit diagram NG 40 to 145 # ▼ Circuit diagram NG 190 to 260 # LRS5 - With load sensing, hydraulically overridable By connecting an external pilot pressure to port ${\bf Z}$, the differential pressure Δp of the load sensing control can be overridden proportionally. Increasing pilot pressure = lower Δp setting. An example of this is shown in the characteristic curve below. Please consult us before carrying out project planning. #### **▼** Characteristic curve #### ▼ Circuit diagram NG 40 to 145 # ▼ Circuit diagram NG 190 to 260 18 **A11V(L)O series 1x** | Axial piston variable pump Power controller #### LR... - with stroke limiter Due to the stroke limiter, it is possible to change or limit the displacement of the pump continuously across the entire control range. At the LRH, the displacement is adjusted proportionally to the pilot pressure $p_{\rm St}$ (max. 40 bar) applied at port **Y** or, at LRU, by the control current applied at the proportional solenoid. Direct current of 24 V (U2, U6) is required to control the proportional solenoid. The stroke limiter is overridden by the power controller, i.e. below the power controller characteristic curve (hyperbolic characteristic curve) the displacement volume is adjusted depending on the control current or pilot pressure. If the set flow or working pressure exceeds the power control characteristic, the power control overrides and reduces the displacement along the hyperbolic characteristic. With electric stroke limiter LRU2, LRU6 and hydraulic stroke limiter LRH2, a control pressure of 30 bar is needed to swivel the pump from its initial position $V_{\rm g\,max}$ to $V_{\rm g\,min}$. The required control power is taken from the working pressure or the external control pressure applied to port ${\bf G}$. To ensure that the stroke limiter functions at a low working pressure of < 30 bar, port **G** must be supplied with an external control pressure of about 30 bar. ### Notice - ► If no external control pressure is connected to **G**, the shuttle valve must be removed or relieved to the reservoir. - ► The proportional solenoids in the U6 version have manual override and spring return. Axial piston variable pump | **A11V(L)O series 1x**Power controller 19 #### LRH1 - Hydraulic stroke control (negative control) With pilot-pressure related control, the pump displacement is adjusted proportionally and continuously with a pilot pressure applied at port **Y**. Basic position without pilot signal is $V_{\rm g\ max}$. - ▶ Control from $V_{\rm g\; max}$ to $V_{\rm g\; min}$ With increasing pilot pressure the pump swivels to a smaller displacement. - Setting range for beginning of control (at V_{g max}) 4 to 10 bar State the beginning of control in plain text in the order. - Maximum permissible pilot pressure $p_{\text{St max}}$ = 40 bar The required control fluid is taken from the working pressure or the external control pressure applied to port **G**. In order for the pump to be moved from the basic position zero or at low working pressure, port **G** must be supplied with external control pressure of at least 30 bar, maximum 40 bar. Design recommendation for the control fluid requirement at ν = 10 mm²/s is 1.2 l/min for the H1 function. #### **Notice** If no external control pressure is connected to ${\bf G}$, this must be indicated in plain text. In this case, the shuttle valve is not included in the scope of delivery. Without external control pressure,
the stroke control has only limited functionality. Please contact us. # ▼ Characteristic curve H1 Pilot pressure increase $V_{\rm g\ max}$ to $V_{\rm g\ min}$: Δp = 25 bar #### ▼ Circuit diagram NG 40 to 145 #### ▼ Circuit diagram NG 190 to 260 20 **A11V(L)O series 1x** | Axial piston variable pump Power controller #### LRH2 - Hydraulic stroke control (positive control) With pilot-pressure related control, the pump displacement is adjusted proportionally and continuously with a pilot pressure applied at port **Y**. Start of adjustment without pilot signal is $V_{\rm g\,min}$ (at working pressure or external control pressure >30 bar). - Control from V_{g min} to V_{g max} With increasing pilot pressure the pump swivels to a higher displacement. - Setting range for beginning of control (at V_{g min}) 4 to 10 bar State the beginning of control in plain text in the order. - ▶ Maximum permissible pilot pressure $p_{\text{St max}}$ = 40 bar The required control fluid is taken from the working pressure or the external control pressure applied to port **G**. In order for the pump to be moved from the basic position zero or at low working pressure, port **G** must be supplied with external control pressure of at least 30 bar, maximum 40 bar. Design recommendation for the control fluid requirement at ν = 10 mm²/s is 0.3 l/min for the H2 function. #### **Notice** - ► If no external control pressure is connected to **G**, this must be indicated in plain text. In this case, the shuttle valve is not included in the scope of delivery. - ► Without external control pressure, the stroke control has only limited functionality. Please contact us. ### ▼ Characteristic curve H2 Pilot pressure increase $V_{\rm g\ min}$ to $V_{\rm g\ max}$: Δp = 25 bar #### ▼ Circuit diagram NG 40 to 145 #### ▼ Circuit diagram NG 190 to 260 21 # Axial piston variable pump | **A11V(L)O series 1x**Power controller #### LRU2/LRU6 - Electric stroke control (positive control) With the electrical stroke control with proportional solenoid, the pump displacement is steplessly adjusted in proportion to the current via the magnetic force. Beginning of control without pilot signal is $V_{\rm g\,min}$ (at working or external control pressure > 30 bar). The mechanically depressurized basic position is $V_{\rm g\,max}$. With increasing control current the pump swivels to a greater displacement (from $V_{\rm g\,min}$ to $V_{\rm g\,max}$). The required control fluid is taken from the working pressure or the external control pressure applied to port **G**. In order for the pump to be moved from the basic position zero or at low working pressure, port **G** must be supplied with external control pressure of at least 30 bar, maximum 40 bar. #### Notice - If no external control pressure is connected to G, this must be indicated in plain text. In this case, the shuttle valve is not included in the scope of delivery. - ► Without external control pressure, the stroke control has only limited functionality. Please contact us. #### ▼ Characteristic curve | Technical data, solenoid | LRU2/LRU6 | | | | |---|--------------|--|--|--| | Voltage | 24 V (±20 %) | | | | | Control current | | | | | | Beginning of control at $V_{ m g\ min}$ | 200 mA | | | | | End of control at $V_{\mathrm{g\ max}}$ | 600 mA | | | | | Current limit | 0.77 A | | | | | Nominal resistance (at 20 °C) | 22.7 Ω | | | | | Dither frequency | 100 Hz | | | | | Duty cycle | 100 % | | | | | Type of protection: see connector version page 69 | | | | | A wide range of BODAS controllers with application software and analog amplifiers are available to control the proportional solenoids. Further information can also be found online under www.boschrexroth.com/mobile-electronics. #### ▼ Circuit diagram NG 40 to 145 # ▼ Circuit diagram NG 190 to 260 22 **A11V(L)O series 1x** | Axial piston variable pump Pressure controller #### **Pressure controller** #### **DR - Pressure controller** The pressure controller limits the maximum pressure at the pump outlet within the control range of the variable pump. The variable pump only supplies as much hydraulic fluid as is required by the consumers. If the working pressure exceeds the pressure command value at the pressure valve, the pump will regulate to a smaller displacement to reduce the control differential. - lacktriangle Basic position in depressurized state: $V_{ m g\ max}$ - Setting range for pressure control: 50 to 350 bar. Specify pressure controller setting in plain text when ordering. #### ▼ Characteristic curve #### ▼ Circuit diagram NG 40 to 145 #### ▼ Circuit diagram NG 190 to 260 Axial piston variable pump | **A11V(L)O series 1x**Pressure controller #### 23 #### DRS - Pressure controller with load sensing The load sensing controller works as a load-pressure controlled flow controller and adjusts the displacement of the pump to the volume required by the consumer. The flow of the pump is then dependent on the cross section of the external metering orifice (1), which is The flow of the pump is then dependent on the cross section of the external metering orifice (1), which is located between the pump and the consumer. Below the setting of the pressure controller and within the control range of the pump, the flow is not dependent on the load pressure. The metering orifice is usually a separately located load sensing directional valve (control block). The position of the directional valve spool determines the opening cross-section of the metering orifice and thus the flow of the pump. The load sensing controller compares the pressure upstream the metering orifice to the one downstream the orifice and keeps the pressure drop (differential pressure Δp) occurring here and thus the flow constant. If the differential pressure Δp at the metering orifice rises, the pump is swiveled back (toward $V_{\rm g\,min}$). If the differential pressure Δp drops, the pump is swiveled out (toward $V_{\rm g\,max}$) until equilibrium at the metering orifice is restored. $\Delta p_{\text{metering orifice}} = p_{\text{pump}} - p_{\text{consumer}}$ - Setting range for Δp 14 to 25 bar (please state in plain text) - ► Standard setting 18 bar The stand-by pressure in zero-stroke operation (metering orifice closed) is slightly higher than the Δp setting. The metering orifice **1** (control block) is not included in the scope of delivery. #### ▼ Characteristic curve #### ▼ Circuit diagram NG 40 to 145 #### ▼ Circuit diagram NG 190 to 260 # 24 **A11V(L)O series 1x** | Axial piston variable pump Pressure controller #### DRG - Pressure controller, hydraulically remote-controlled On the remote-controlled pressure controller, the setting of the pressure controller can be overridden by a separate pressure relief valve (1) to set a lower pressure command value. Setting range from 50 to 350 bar. In addition a separately configured 2/2 directional valve (2) can be operated to start the pump with low working pressure (standby pressure). Setting range for Δp 14 to 25 bar, standard setting 22 bar (when ordering, please state in plain text) Both functions can be used individually or in combination (see circuit diagram). The external valves are not included in the scope of delivery. As a separate pressure relief valve (1) we recommend: DBDH 6 (manual actuation) see data sheet 25402. #### **▼** Characteristic curve #### Notice Remote-controlled pressure cut-off is also possible in connection with LR, HD and EP. #### ▼ Circuit diagram NG 40 to 145 # ▼ Circuit diagram NG 190 to 260 Axial piston variable pump | **A11V(L)O series 1x**Pressure controller 25 #### **DRL** - Pressure controller for parallel operation The DRL pressure controller is suitable for pressure control of several A11VO axial piston pumps in parallel operation pumping into a common pressure line. The pressure cut-off has a pressure increase of approx. 15 bar from $q_{v \text{ max}}$ to $q_{v \text{ min}}$. The pump regulates therefore to a pressure dependent swivel angle. This results in a stable controller behavior. With the externally installed pressure relief valve (1) the nominal pressure command value of all pumps connected Setting range from 50 to 350 bar. Each pump can be individually unloaded from the system by a separately installed 3/2 directional valve (2). The check valves (3) in the working line (port A) or control line (connection X) must be generally provided. The external valves are not included in the scope of delivery. to the system is adjusted to the same value. As a separate pressure relief valve (1) we recommend: DBDH 6 (manual actuation) see data sheet 25402. #### ▼ Characteristic curve #### ▼ Circuit diagram NG 40 to 260 26 **A11V(L)O series 1x** | Axial piston variable pump Hydraulic control, pilot-pressure related # Hydraulic control, pilot-pressure related #### HD2 - Hydraulic control With pilot-pressure related control, the pump displacement is adjusted proportionally and continuously with a pilot pressure applied at port **Y**. Start of adjustment without pilot signal is $V_{\rm g \, min}$ (at working pressure or external control pressure >30 bar). - Control from V_{g min} to V_{g max} With increasing pilot pressure the pump swivels to a higher displacement. - ▶ Setting range for beginning of control (at $V_{\rm g\;min}$) 4 to 10 bar State the beginning of control in plain text in the order. - ▶ Maximum permissible pilot pressure $p_{\text{St max}}$ = 40 bar The required control fluid is taken from the working pressure or the external control pressure applied to port **G**. In order for the pump to be moved from the basic position zero or at low working pressure, port **G** must be supplied with external control pressure of at least 30 bar, maximum 40 bar. #### **Notice** - If no external control pressure is connected to G, this must be indicated in plain text. In this case, the shuttle valve is not
included in the scope of delivery. - ightharpoonup Without external control pressure, the stroke control by $V_{ m g\,min}$ has only limited functionality. Please contact us. ### ▼ HD2 characteristic curve Pilot pressure increase $V_{\rm g\ min}$ to $V_{\rm g\ max}$: Δp = 25 bar #### ▼ Circuit diagram NG 40 to 260 Axial piston variable pump | **A11V(L)O series 1x**Hydraulic control, pilot-pressure related ### 27 #### HD2D - Hydraulic control with pressure cut-off The pressure cut-off is a pressure control which adjusts the displacement of the pump back to $V_{\rm g\ min}$ after reaching the set pressure command value. This function overrides the hydraulic stroke control, i.e. the stroke control function is executed below the pressure command value. The valve for pressure cut-off is integrated in the controller housing and is permanently set to a pressure command value at the factory. Setting range from 50 to 350 bar. #### **▼** Characteristic curve #### ▼ Circuit diagram NG 40 to 145 #### ▼ Circuit diagram NG 190 to 260 28 **A11V(L)O series 1x** | Axial piston variable pump Electrical control with proportional solenoid # **Electrical control with proportional solenoid** # EP2/EP6 - Electric control With the electrical control with proportional solenoid, the pump displacement is steplessly adjusted in proportion to the current via the magnetic force. Beginning of control without pilot signal is $V_{\rm g\,min}$ (at working or external control pressure > 30 bar). Control from $V_{\rm g\,min}$ to $V_{\rm g\,max}$ With increasing control current the pump swivels to a higher displacement. The required control fluid is taken from the working pressure or the external control pressure applied to port **G**. In order for the pump to be moved from the basic position zero or at low working pressure, port **G** must be supplied with external control pressure¹⁾ of at least 30 bar, maximum 40 bar. #### **Notice** - If no external control pressure is connected to G, this must be indicated in plain text. In this case, the shuttle valve is not included in the scope of delivery. - Without external control pressure, the stroke control has only limited functionality. Please contact us - ► The proportional solenoids in the EP6 version have manual override and spring return. # **▼** Characteristic curve | Technical data, proportional solenoid | EP2/EP6 | | | | | |---|--------------|--|--|--|--| | Voltage | 24 V (±20 %) | | | | | | Control current | | | | | | | Beginning of control at $V_{\mathrm{g\ min}}$ | 200 mA | | | | | | End of control at $V_{ m g\ max}$ | 600 mA | | | | | | Current limit | 0.77 A | | | | | | Nominal resistance (at 20 °C) | 22.7 Ω | | | | | | Dither frequency | 100 Hz | | | | | | Duty cycle | 100 % | | | | | | Type of protection: see connector version page 69 | | | | | | A wide range of BODAS controllers with application software and analog amplifiers are available to control the proportional solenoids. Further information can also be found online under www.boschrexroth.com/mobile-electronics. #### ▼ Circuit diagram NG 40 to 260 With an external control pressure supply, it is possible for the pump to swivel slightly beyond the zero position (to the mechanical stop). Axial piston variable pump | **A11V(L)O series 1x** Electrical control with proportional solenoid 29 #### EP2D/EP6D - Electric control with pressure cut-off The pressure cut-off is a pressure control which adjusts the displacement of the pump back to $V_{\rm g\ min}$ after reaching the set pressure command value. This function overrides the electric control, i.e. the control-current-dependent function is executed below the pressure command value. The valve for pressure cut-off is integrated in the controller housing and is permanently set to a pressure command value at the factory. Setting range from 50 to 350 bar. #### ▼ Characteristic curve #### ▼ Circuit diagram NG 40 to 145 #### ▼ Circuit diagram NG 190 to 260 30 **A11V(L)O series 1x** | Axial piston variable pump Electrical control with proportional solenoid #### EP2G2 - Electric control with electrically overridable pressure cut-off (negative control) The remote-controlled G2 pressure controller has a fixed Δp value. An electric pressure relief valve (pilot valve) integrated in the controller enables remote pressure control. ▶ Recommendation for fixed set value at Δp 22 bar. When ordering, state in plain text: Maximum pressure p_{max} [bar] (pressure on port A) with 0 mA current. #### Pilot valve G2 The electro proportional pressure relief valve is directly controlled with negative control as cartridge version (see KBPS.8B data sheet 18139-05). #### ▼ Characteristic curve G2 | Technical data, proportional solenoid G2 | | | | | |---|---------|--|--|--| | | | | | | | Voltage | 24 V | | | | | Control current | | | | | | Minimum pressure p_{min} | 1200 mA | | | | | Maximum pressure p_{\max} | 0 mA | | | | | Maximum rated current | 1200 mA | | | | | Nominal resistance (at 20 °C) | 4.8 Ω | | | | | Dither frequency | 200 Hz | | | | | Duty cycle | 100 % | | | | | Type of protection: see connector version page 69 | | | | | A wide range of BODAS controllers with application software and analog amplifiers are available to control the proportional solenoids. Further information can also be found online under www.boschrexroth.com/mobile-electronics. #### ▼ Circuit diagram NG 95 to 260 31 Axial piston variable pump | A11V(L)O series 1x Electrical control with proportional solenoid #### EP2G4 - Electric control with electrically overridable pressure cut-off (positive control) The remote-controlled G4 pressure controller has a fixed Δp value. An electric pressure relief valve (pilot valve) integrated in the controller enables remote pressure control. ▶ Recommendation for fixed set value at Δp 22 bar. When ordering, state in plain text: Maximum pressure p_{max} [bar] (pressure on port A) with maximum current. #### Pilot valve G4 The electro proportional pressure relief valve is directly controlled with positive control as cartridge version (see KBPS.8A data sheet 18139-04). #### ▼ Characteristic curve G4 | Technical data, proportional solenoid | G4 | |---|---------| | Voltage | 24 V | | Control current | | | Minimum pressure p_{min} | 0 mA | | Maximum pressure p_{\max} | 1200 mA | | Maximum rated current | 1200 mA | | Nominal resistance (at 20 °C) | 4.8 Ω | | Dither frequency | 200 Hz | | Duty cycle | 100 % | | Type of protection: see connector version | page 69 | A wide range of BODAS controllers with application software and analog amplifiers are available to control the proportional solenoids. Further information can also be found online under www.boschrexroth.com/mobile-electronics. #### ▼ Circuit diagram NG 95 to 260 32 **A11V(L)O series 1x** | Axial piston variable pump Dimensions, size 40 Dimensions [mm] # Dimensions, size 40 # LRDCS - Power controller with pressure cut-off, cross-sensing and load sensing 1) Center of gravity 33 Dimensions [mm] Axial piston variable pump | A11V(L)O series 1x Dimensions, size 40 #### ▼ Splined shaft DIN 5480 #### ▼ Parallel keyed shaft DIN 6885 #### ▼ Splined shaft SAE J744 #### ▼ Splined shaft SAE J744 | Ports | | Standard | Size | $p_{\sf max}$ [bar] $^{3)}$ | State ⁵⁾ | |-----------------------|---|--------------------|------------------------------|-----------------------------|---------------------| | Α | Working port
Fastening thread | SAE J518
DIN 13 | 3/4 in
M10 × 1.5; 16 deep | 400 | 0 | | S | Suction port (without charge pump) Fastening thread | SAE J518
DIN 13 | 2 in
M12 × 1.75; 17 deep | 30 | 0 | | T ₁ | Drain port | DIN 3852 | M22 × 1.5; 14 deep | 10 | 4) | | T ₂ | Drain port | DIN 3852 | M22 × 1.5; 14 deep | 10 | 4) | | R | Air bleed port | DIN 3852 | M22 × 1.5; 14 deep | 10 | Х | | M ₁ | Measuring port control pressure | DIN 3852 | M12 × 1.5; 12 deep | 400 | Х | | М | Measuring port pressure A | DIN 3852 | M12 × 1.5; 12 deep | 400 | Х | | Х | Pilot pressure port for version with load sensing (S) and remote-controlled pressure cut-off (G) | DIN 3852 | M14 × 1.5; 12 deep | 400 | 0 | | Υ | Pilot pressure port for version with stroke limiter (H) and HD | DIN 3852 | M14 × 1.5; 12 deep | 40 | 0 | | Z | Pilot pressure port for version with cross sensing (C) and power override (LR3) Power override (LG1) | DIN 3852 | M14 × 1.5; 12 deep | 400
40 | 0 | | G | Control pressure port (controller) for version with stroke limiter (H, U2, U6), HP and EP (otherwise plugged) | DIN 3852 | M14 × 1.5; 12 deep | 40 | 0 | ¹⁾ Center bore according to DIN 332 (thread according to DIN 13) ²⁾ ANSI B92.1a-1976, 30° pressure angle, flat root, side fit, tolerance class 5 ³⁾ Dependent on settings and working pressure ⁴⁾ Depending on installation position, \mathbf{T}_1 or \mathbf{T}_2 must be connected (see also installation instructions on pages 70 to 73) $_{5)}$ O = Must be connected (plugged on delivery) X = Plugged (in normal operation) 34 **A11V(L)O series 1x** | Axial piston variable pump Dimensions, size 40 Dimensions [mm] ▼ LRDH1 - Power controller, pressure cut-off, hydraulic stroke limiter (negative control) ▼ LRDU2 - Power controller, pressure cut-off, hydraulic stroke limiter (positive control) ▼ HD2D - Hydraulic, pilot-pressure related control, pressure cut-off Bosch Rexroth AG, RE 92500/2023-05-11 ▼ LRDH2 - Power controller, pressure cut-off, hydraulic stroke limiter (positive control) ▼ LR3DS - Power controller, high-pressure-dependent override, pressure cut-off, load sensing ▼ EP2D - Electric control, proportional solenoid, pressure cut-off 35 Dimensions [mm] Axial piston variable pump | **A11V(L)O series 1x**Dimensions, size 40 # ▼ DRL -
Pressure controller, parallel operation ▼ LE2S - Power controller, electrical override, load sensing (negative control) 36 **A11V(L)O series 1x** | Axial piston variable pump Dimensions, size 60 Dimensions [mm] # Dimensions, size 60 # LRDCS - Power controller with pressure cut-off, cross-sensing and load sensing 1) Center of gravity Axial piston variable pump | A11V(L)O series 1x37 Dimensions, size 60 # ▼ Splined shaft DIN 5480 # ▼ Parallel keyed shaft DIN 6885 ## ▼ Splined shaft SAE J744 ## ▼ Splined shaft SAE J744 | Ports | | Standard | Size | $p_{\sf max}$ [bar] $^{3)}$ | State ⁵⁾ | |-----------------------|---|----------|---------------------|-----------------------------|---------------------| | Α | Working port | SAE J518 | 3/4 in | 400 | 0 | | | Fastening thread | DIN 13 | M10 × 1.5; 17 deep | | | | S | Suction port (without charge pump) | SAE J518 | 2 in | 30 | 0 | | | Fastening thread | DIN 13 | M12 × 1.75; 20 deep | | | | T ₁ | Drain port | DIN 3852 | M22 × 1.5; 14 deep | 10 | 4) | | \mathbf{T}_2 | Drain port | DIN 3852 | M22 × 1.5; 14 deep | 10 | 4) | | R | Air bleed port | DIN 3852 | M22 × 1.5; 14 deep | 10 | Χ | | \mathbf{M}_1 | Measuring port control pressure | DIN 3852 | M12 × 1.5; 12 deep | 400 | Χ | | М | Measuring port pressure A | DIN 3852 | M12 × 1.5; 12 deep | 400 | Х | | Х | Pilot pressure port for version with load sensing (S) and remote-controlled pressure cut-off (G) | DIN 3852 | M14 × 1.5; 12 deep | 400 | 0 | | Υ | Pilot pressure port for version with stroke limiter (H) and HD | DIN 3852 | M14 × 1.5; 12 deep | 40 | 0 | | Z | Pilot pressure port for version with cross sensing (C) and | DIN 3852 | M14 × 1.5; 12 deep | | 0 | | | power override (LR3) | | | 400 | | | | Power override (LG1) | | | 40 | | | G | Control pressure port (controller) for version with stroke limiter (H, U2, U6), HP and EP (otherwise plugged) | DIN 3852 | M14 × 1.5; 12 deep | 40 | 0 | ¹⁾ Center bore according to DIN 332 (thread according to DIN 13) ²⁾ ANSI B92.1a-1976, 30° pressure angle, flat root, side fit, tolerance class 5 ³⁾ Dependent on settings and working pressure ⁴⁾ Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on pages 70 to 73) ⁵⁾ O = Must be connected (plugged on delivery) X = Plugged (in normal operation) Dimensions [mm] ▼ LRDH1 - Power controller, pressure cut-off, hydraulic stroke limiter (negative control) ▼ LRDU2 - Power controller, pressure cut-off, ▼ HD2D - Hydraulic, pilot-pressure related control, pressure cut-off Bosch Rexroth AG, RE 92500/2023-05-11 ▼ LRDH2 - Power controller, pressure cut-off, hydraulic stroke limiter (positive control) ▼ LR3DS - Power controller, high-pressure-dependent override, pressure cut-off, load sensing ▼ EP2D - Electric control, proportional solenoid, pressure cut-off Axial piston variable pump | **A11V(L)O series 1x**Dimensions, size 60 39 # ▼ DRS/DRG - Remote-controlled pressure controller, load sensing ▼ DRL - Pressure controller, parallel operation # ▼ LE2S - Power controller, electrical override, load sensing (negative control) Dimensions [mm] # Dimensions, size 75 # LRDCS - Power controller with pressure cut-off, cross-sensing and load sensing 1) Center of gravity #### Axial piston variable pump | A11V(L)O series 1x41 # Dimensions, size 75 # ▼ Splined shaft DIN 5480 # ▼ Parallel keyed shaft DIN 6885 ## ▼ Splined shaft SAE J744 ## ▼ Splined shaft SAE J744 | Ports | | Standard | Size | $p_{\sf max}$ [bar] $^{\scriptscriptstyle (3)}$ | State ⁵⁾ | |-----------------------|---|----------|---------------------|---|---------------------| | Α | Working port | SAE J518 | 1 in | 400 | 0 | | | Fastening thread | DIN 13 | M12 × 1.75; 17 deep | | | | S | Suction port (without charge pump) | SAE J518 | 2 1/2 in | 30 | 0 | | | Fastening thread | DIN 13 | M12 × 1.75; 17 deep | | | | T ₁ | Drain port | DIN 3852 | M22 × 1.5; 14 deep | 10 | 4) | | T_2 | Drain port | DIN 3852 | M22 × 1.5; 14 deep | 10 | 4) | | R | Air bleed port | DIN 3852 | M22 × 1.5; 14 deep | 10 | Χ | | M ₁ | Measuring port control pressure | DIN 3852 | M12 × 1.5; 12 deep | 400 | Χ | | М | Measuring port pressure A | DIN 3852 | M12 × 1.5; 12 deep | 400 | X | | Х | Pilot pressure port for version with load sensing (S) and remote-controlled pressure cut-off (G) | DIN 3852 | M14 × 1.5; 12 deep | 400 | 0 | | Υ | Pilot pressure port for version with stroke limiter (H) and \ensuremath{HD} | DIN 3852 | M14 × 1.5; 12 deep | 40 | 0 | | Z | Pilot pressure port for version with cross sensing (C) and | DIN 3852 | M14 × 1.5; 12 deep | | 0 | | | power override (LR3) | | | 400 | | | | Power override (LG1) | | | 40 | | | G | Control pressure port (controller) for version with stroke limiter (H, U2, U6), HP and EP (otherwise plugged) | DIN 3852 | M14 × 1.5; 12 deep | 40 | 0 | ¹⁾ Center bore according to DIN 332 (thread according to DIN 13) ²⁾ ANSI B92.1a-1976, 30° pressure angle, flat root, side fit, tolerance class 5 ³⁾ Dependent on settings and working pressure Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on pages 70 to 73) ⁵⁾ O = Must be connected (plugged on delivery) X = Plugged (in normal operation) Dimensions [mm] ▼ LRDH1 - Power controller, pressure cut-off, hydraulic stroke limiter (negative control) ▼ LRDU2 - Power controller, pressure cut-off, hydraulic stroke limiter (positive control) ▼ HD2D - Hydraulic, pilot-pressure related control, pressure cut-off Bosch Rexroth AG, RE 92500/2023-05-11 LRDH2 - Power controller, pressure cut-off, hydraulic stroke limiter (positive control) ▼ LR3DS - Power controller, high-pressure-dependent override, pressure cut-off, load sensing ▼ EP2D - Electric control, proportional solenoid, pressure cut-off Axial piston variable pump | A11V(L)O series 1x Dimensions, size 75 43 # ▼ DRS/DRG - Remote-controlled pressure controller, load sensing ▼ DRL - Pressure controller, parallel operation # ▼ LE2S - Power controller, electrical override, load sensing (negative control) Dimensions [mm] # Dimensions, size 95 # LRDCS - Power controller with pressure cut-off, cross-sensing and load sensing - 1) Center of gravity - $_{ m 2)}$ Dimensions according to SAE J617-No. 3, for connection to the flywheel housing of the combustion engine Axial piston variable pump | A11V(L)O series 1x45 Dimensions, size 95 # ▼ Splined shaft DIN 5480 # ▼ Parallel keyed shaft DIN 6885 # ▼ Splined shaft SAE J744 | Ports | | Standard | Size | p_{max} [bar] $^{3)}$ | State ⁵⁾ | |-----------------------|--|----------|---------------------|-------------------------|---------------------| | Α | Working port | SAE J518 | 1 in | 400 | 0 | | | Fastening thread | DIN 13 | M12 × 1.75; 17 deep | | | | S | Suction port (without charge pump) | SAE J518 | 3 in | 30 | Ο | | | Fastening thread | DIN 13 | M16 × 2; 24 deep | | | | \mathbf{T}_1 | Drain port | DIN 3852 | M26 × 1.5; 16 deep | 10 | 4) | | T ₂ | Drain port | DIN 3852 | M26 × 1.5; 16 deep | 10 | 4) | | R | Air bleed port (flange SAE J744) | DIN 3852 | M26 × 1.5; 16 deep | 10 | X | | R ₁ | Air bleed port (flange SAE 3) | DIN 3852 | M26 × 1.5; 16 deep | 10 | X | | \mathbf{R}_2 | Air bleed port (flange SAE 3) | DIN 3852 | M26 × 1.5; 16 deep | 10 | X | | M ₁ | Measuring port control pressure | DIN 3852 | M12 × 1.5; 12 deep | 400 | X | | М | Measuring port pressure A | DIN 3852 | M12 × 1.5; 12 deep | 400 | X | | Х | Pilot pressure port for version with load sensing (S) and remote-controlled pressure cut-off (G) | DIN 3852 | M14 × 1.5; 12 deep | 400 | 0 | | Υ | Pilot pressure port in version with stroke limiter (H) and 2-stage pressure cut-off (E) and HD | DIN 3852 | M14 × 1.5; 12 deep | 40 | 0 | | Z | Pilot pressure port for version with cross sensing (C) and | DIN 3852 | M14 × 1.5; 12 deep | | 0 | | | power override (LR3) | | | 400 | | | | Power override (LG1) | | | 40 | | | | Load sensing override (S5) | | | 30 | | | G | Control pressure port (controller) | DIN 3852 | M14 × 1.5; 12 deep | 40 | 0 | | | for version with stroke limiter (H, U2, U6), HP and EP | | | | | | | (otherwise plugged) | | | | | - 1) Center bore according to DIN 332 (thread according to DIN 13) - 2) ANSI B92.1a-1976, 30° pressure angle, flat root, side fit, tolerance class 5 - 3) Dependent on settings and working pressure - 4) Depending on installation position, \mathbf{T}_1 or \mathbf{T}_2 must be connected (see also installation instructions on pages 70 to 73) - 5) O = Must be connected (plugged on delivery) - X = Plugged (in normal operation) Dimensions [mm] ▼ LRDH1 - Power controller, pressure cut-off, hydraulic stroke limiter (negative control) ▼ LRDU2 - Power controller, pressure cut-off, hydraulic stroke limiter (positive control) ▼ LG1DS - Power controller, pilot-pressure related override, pressure cut-off, load sensing (negative control) Bosch Rexroth AG, RE 92500/2023-05-11 ▼ LRDH2 - Power controller, pressure cut-off, hydraulic stroke limiter (positive control) ▼ LR3DS - Power controller, high-pressure-dependent override, pressure cut-off, load sensing ▼ HD2D - Hydraulic, pilot-pressure related control, pressure cut-off Axial piston variable pump | **A11V(L)O series 1x** 47 Dimensions, size 95 ▼ EP2D - Electric control, proportional solenoid, pressure cut-off ▼ EP2G2/EP2G4 - Electric control with electrically overridable pressure cut-off (positive/negative control) ▼ DRS/DRG - Remote-controlled pressure controller, load sensing ▼ DRL - Pressure controller, parallel operation ▼ LE2S - Power controller, electrical override, load sensing (negative control) ▼ LE2S2/LE2S5 - Power
controller, electrical override, load sensing, overridable Dimensions [mm] # Dimensions, size 130/145 # LRDCS - Power controller with pressure cut-off, cross-sensing and load sensing - 1) Center of gravity - $_{\rm 2)}$ Dimensions according to SAE J617-No. 3, for connection to the flywheel housing of the combustion engine - 3) The housing or length dimension with flange SAE J617-No.3 is 5 mm shorter than the standard housing. Axial piston variable pump | **A11V(L)O series 1x** Dimensions, size 130/145 # ▼ Parallel keyed shaft DIN 6885 ## ▼ Splined shaft SAE J744 | Ports | | Standard | Size | $p_{\rm max}$ [bar] ³⁾ | State ⁵⁾ | |-----------------------|---|----------|---------------------|-----------------------------------|---------------------| | A | Working port | SAE J518 | 1 in | 400 | 0 | | | Fastening thread | DIN 13 | M12 × 1.75; 17 deep | | | | A ₁ | Working port | SAE J518 | 1 1/4 in | 400 | 0 | | | Fastening thread | DIN 13 | M14 × 2; 19 deep | | | | S | Suction port (without charge pump) | SAE J518 | 3 in | 30 | 0 | | | Fastening thread | DIN 13 | M16 × 2; 24 deep | | | | S ₁ | Suction port (with charge pump) | SAE J518 | 3 in | 2 | 0 | | | Fastening thread | DIN 13 | M16 × 2; 24 deep | | | | T ₁ | Drain port | DIN 3852 | M26 × 1.5; 16 deep | 10 | 4) | | T ₂ | Drain port | DIN 3852 | M26 × 1.5; 16 deep | 10 | 4) | | R | Air bleed port (flange SAE J744) | DIN 3852 | M26 × 1.5; 16 deep | 10 | X | | R ₁ | Air bleed port (flange SAE 3) | DIN 3852 | M26 × 1.5; 16 deep | 10 | Х | | R_2 | Air bleed port (flange SAE 3) | DIN 3852 | M26 × 1.5; 16 deep | 10 | Х | | M ₁ | Measuring port control pressure | DIN 3852 | M12 × 1.5; 12 deep | 400 | X | | М | Measuring port pressure A | DIN 3852 | M12 × 1.5; 12 deep | 400 | X | | X | Pilot pressure port for version with load sensing (S) and remote-controlled pressure cut-off (G) | DIN 3852 | M14 × 1.5; 12 deep | 400 | 0 | | Y | Pilot pressure port in version with stroke limiter (H) and
2-stage pressure cut-off (E) and HD | DIN 3852 | M14 × 1.5; 12 deep | 40 | 0 | | Z | Pilot pressure port for version with cross sensing (C) and | DIN 3852 | M14 × 1.5; 12 deep | | 0 | | | power override (LR3) | | | 400 | | | | Power override (LG1) | | | 40 | | | | Load sensing override (S5) | | | 30 | | | G | Control pressure port (controller) for version with stroke limiter (H, U2, U6), HP and EP | DIN 3852 | M14 × 1.5; 12 deep | 40 | 0 | - 1) Center bore according to DIN 332 (thread according to DIN 13) - 2) ANSI B92.1a-1976, 30° pressure angle, flat root, side fit, tolerance class 5 - 3) Dependent on settings and working pressure - 4) Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on pages 70 to 73) - 5) O = Must be connected (plugged on delivery) - X = Plugged (in normal operation) Dimensions [mm] ▼ LRDH1 - Power controller, pressure cut-off, hydraulic stroke limiter (negative control) ▼ LRDU2 - Power controller, pressure cut-off, ▼ HD2D - Hydraulic, pilot-pressure related control, pressure cut-off Bosch Rexroth AG, RE 92500/2023-05-11 ▼ LRDH2 - Power controller, pressure cut-off, hydraulic stroke limiter (positive control) ▼ LR3DS - Power controller, high-pressure-dependent override, pressure cut-off, load sensing ▼ EP2D - Electric control, proportional solenoid, pressure cut-off Axial piston variable pump | **A11V(L)O series 1x** 51 Dimensions, size 130/145 ▼ EP2G2/EP2G4 - Electric control with electrically overridable pressure cut-off (positive/negative control) ▼ DRL - Pressure controller, parallel operation ▼ LE2S2/LE2S5 - Power controller, electrical override, load sensing, overridable ▼ DRS/DRG - Remote-controlled pressure controller, load sensing ▼ LE2S - Power controller, electrical override, load sensing (negative control) Dimensions [mm] # **Dimensions, size 190** # LRDCS - Power controller with pressure cut-off, cross-sensing and load sensing - 1) Center of gravity - 2) Dimensions according to SAE J617-No. 3, for connection to the flywheel housing of the combustion engine - 3) The housing or length dimension with flange SAE J617-No.3 is 5 mm shorter than the standard housing. Axial piston variable pump | **A11V(L)O series 1x**Dimensions, size 190 53 # ▼ Splined shaft DIN 5480 # ▼ Parallel keyed shaft DIN 6885 ## ▼ Splined shaft SAE J744 ## ▼ Splined shaft SAE J744 | Ports | | Standard | Size | $p_{\rm max}$ [bar] ³⁾ | State ⁵⁾ | |-----------------------|--|----------|--------------------|-----------------------------------|---------------------| | A | Working port | SAE J518 | 1 1/2 in | 400 | 0 | | | Fastening thread | DIN 13 | M16 × 2; 21 deep | | | | A ₁ | Working port | SAE J518 | 1 1/2 in | 400 | 0 | | | Fastening thread | DIN 13 | M16 × 2; 21 deep | | | | S | Suction port (without charge pump) | SAE J518 | 3 1/2 in | 30 | 0 | | | Fastening thread | DIN 13 | M16 × 2; 24 deep | | | | S 1 | Suction port (with charge pump) | SAE J518 | 3 1/2 in | 2 | 0 | | | Fastening thread | DIN 13 | M16 × 2; 24 deep | | | | T ₁ | Drain port | DIN 3852 | M33 × 2; 16 deep | 10 | 4) | | T ₂ | Drain port | DIN 3852 | M33 × 2; 16 deep | 10 | 4) | | R | Air bleed port (flange SAE J744) | DIN 3852 | M33 × 2; 16 deep | 10 | Х | | R ₁ | Air bleed port (flange SAE 3) | DIN 3852 | M33 × 2; 16 deep | 10 | Х | | R_2 | Air bleed port (flange SAE 3) | DIN 3852 | M33 × 2; 16 deep | 10 | Χ | | M ₁ | Measuring port control pressure | DIN 3852 | M12 × 1.5; 12 deep | 400 | Χ | | М | Measuring port pressure A | DIN 3852 | M12 × 1.5; 12 deep | 400 | Х | | Х | Pilot pressure port for version with load sensing (S) and remote-controlled pressure cut-off (G) | DIN 3852 | M14 × 1.5; 12 deep | 400 | 0 | | Υ | Pilot pressure port in version with stroke limiter (H) and | DIN 3852 | M14 × 1.5; 12 deep | 40 | 0 | | | 2-stage pressure cut-off (E) and HD | | | | | | Z | Pilot pressure port for version with cross sensing (C) and | DIN 3852 | M14 × 1.5; 12 deep | | 0 | | | power override (LR3) | | M16 × 1.5; 12 deep | 400 | | | | Power override (LG1) | | M14 × 1.5; 12 deep | 40 | | | | Load sensing override (S5) | | M14 × 1.5; 12 deep | 30 | | | G | Control pressure (controller) for version with stroke limiter (H, U2, U6), HP and EP | DIN 3852 | M14 × 1.5; 12 deep | 40 | 0 | - 1) Center bore according to DIN 332 (thread according to DIN 13) - 2) ANSI B92.1a-1976, 30° pressure angle, flat root, side fit, tolerance - 3) Dependent on settings and working pressure - $_{\rm 4)}$ Depending on installation position, T $_{\rm 1}$ or T $_{\rm 2}$ must be connected (see also installation instructions on pages 70 to 73) - 5) O = Must be connected (plugged on delivery) - X = Plugged (in normal operation) Dimensions [mm] ▼ LRDH1 - Power controller, pressure cut-off, hydraulic stroke limiter (negative control) ▼ LRDH2 - Power controller, pressure cut-off, hydraulic stroke limiter (positive control) LRDU2 - Power controller, pressure cut-off, hydraulic stroke limiter (positive control) ▼ LR3DS - Power controller, high-pressure-dependent override, pressure cut-off, load sensing ▼ LG1GH2 - Power controller, pilot-pressure related override, stroke control LG2H2 - Power controller, pilot-pressure related override 55 Dimensions [mm] Axial piston variable pump | **A11V(L)O series 1x**Dimensions, size 190 ▼ HD2D - Hydraulic, pilot-pressure related control, pressure cut-off ▼ EP2D - Electric control, proportional solenoid, pressure cut-off ▼ EP2G2 - Electric control with electrically overridable pressure cut-off (positive control) ▼ DRS/DRG - Remote-controlled pressure controller, load sensing ▼ DRL - Pressure controller, parallel operation ▼ LE2S - Power controller, electrical override, load sensing (negative control) Dimensions [mm] # ▼ LE2S2/LE2S5 - Power controller, electrical override, load sensing, overridable 57 Dimensions [mm] Axial piston variable pump | **A11V(L)O series 1x**Dimensions, size 260 # **Dimensions, size 260** # LRDCS - Power controller with pressure cut-off, cross-sensing and load sensing 1) Center of gravity Dimensions [mm] # ▼ Splined shaft DIN 5480 # ▼ Parallel keyed shaft DIN 6885 #### ▼ Splined shaft SAE J744 # ▼ Splined shaft SAE J744 | Ports | _ | Standard | Size | $p_{\sf max}$ [bar] $^{3)}$ | State ⁵⁾ | |-----------------------|---|--------------------|--|-----------------------------|---------------------| | A | Working port
Fastening thread | SAE J518
DIN 13 | 1 1/2 in
M16 × 2; 21 deep | 400 | 0 | | A ₁ | Working port
Fastening thread | SAE J518
DIN 13 | 1 1/2 in
M16 × 2; 21 deep | 400 | 0 | | S | Suction port (without charge pump)
Fastening thread | SAE J518
DIN 13 | 3 1/2 in
M16 × 2; 24 deep | 30 | 0 | | S ₁ | Suction port (with charge pump)
Fastening thread | SAE J518
DIN 13 | 4 in
M16 × 2; 21 deep | 2 | 0 | | T ₁ | Drain port | DIN 3852 | M33 × 2; 19 deep | 10 | 4) | | T ₂ | Drain port | DIN 3852 | M33 × 2; 19 deep | 10 | 4) | | R | Air bleed port | DIN 3852 | M33 × 2; 16 deep | 10 | Х | | M ₁ | Measuring port control pressure | DIN 3852 | M12 × 1.5; 12 deep | 400 | Х | | М | Measuring port pressure A | DIN 3852 | M12 × 1.5; 12 deep | 400 | Х | | K | Pilot pressure port for version with load sensing (S) and remote-controlled pressure cut-off (G) | DIN 3852 | M14 × 1.5; 12 deep | 400 | 0 | | ′ | Pilot pressure port in version with stroke limiter (H) and 2-stage pressure cut-off (E) and HD | DIN 3852 | M14 × 1.5; 12 deep | 40 | 0 | | Z | Pilot pressure port for version with cross sensing (C) and power override
(LR3) Power override (LG1) Load sensing override (S5) | DIN 3852 | M14 × 1.5; 12 deep
M16 × 1.5; 12 deep
M14 × 1.5; 12 deep
M14 × 1.5; 12 deep | 400
40
30 | 0 | | G | Control pressure (controller) for version with stroke limiter (H, U2, U6), HP and EP | DIN 3852 | M14 × 1.5; 12 deep | 40 | 0 | - $_{\rm 1)}$ Center bore according to DIN 332 (thread according to DIN 13) - $_{\rm 2)}$ ANSI B92.1a-1976, 30° pressure angle, flat root, side fit, tolerance class 5 - 3) Dependent on settings and working pressure - $_{\rm 4)}$ Depending on installation position, T $_{\rm 1}$ or T $_{\rm 2}$ must be connected (see also installation instructions on pages 70 to 73) - 5) O = Must be connected (plugged on delivery) - X = Plugged (in normal operation) Axial piston variable pump | **A11V(L)O series 1x**Dimensions, size 260 59 LRDH1 - Power controller, pressure cut-off, hydraulic stroke limiter (negative control) ▼ LRDU2 - Power controller, pressure cut-off, ▼ LG1GH2 - Power controller, pilot-pressure related override LRDH2 - Power controller, pressure cut-off, hydraulic stroke limiter (positive control) LR3DS - Power controller, high-pressure-dependent override, pressure cut-off, load sensing ▼ LG2H2 - Power controller, pilot-pressure related override Dimensions [mm] #### ▼ HD2D - Hydraulic, pilot-pressure related control, pressure cut-off ▼ EP2G2/EP2G4 - Electric control with electrically overridable pressure cut-off (positive/negative control) ▼ DRL - Pressure controller, parallel operation Bosch Rexroth AG, RE 92500/2023-05-11 # ▼ EP2D - Electric control, proportional solenoid, pressure cut-off ▼ DRS/DRG - Remote-controlled pressure controller, load sensing ▼ LE2S - Power controller, electrical override, load sensing (negative control) Axial piston variable pump | **A11V(L)O series 1x** 61 Dimensions, size 260 # ▼ LE2S2/LE2S5 - Power controller, electrical override, load sensing, overridable Dimensions [mm] # **Dimensions, through-drive** | Flange SAE J744 | Flange SAE J744 Hub for splined shaft ¹⁾ | | Availability across sizes | | | | | | | Code ³⁾ | | |-----------------|---|----------------------------|---------------------------|----|----|----|---------|------------------------------|-----|--------------------|-----| | Diameter | Diamete | r | 40 | 60 | 75 | 95 | 130/145 | 130/145 ²⁾ | 190 | 260 | | | 82-2 (A) | 5/8 in | 9T 16/32 DP ¹⁾ | • | • | • | • | • | • | • | • | K01 | | | 3/4 in | 11T 16/32 DP ¹⁾ | • | • | • | • | • | • | • | • | K52 | | 101-2 (B) | 7/8 in | 13T 16/32 DP ¹⁾ | • | • | • | • | • | • | • | • | K02 | | | 1 in | 15T 16/32 DP ¹⁾ | • | • | • | • | • | • | • | • | К04 | | | W 35 × 2 | ! × 16 × 9g | • | • | • | • | 0 | 0 | • | • | K79 | • = Available • = On request ## ▼ 82-2 (A) | | A1 | | A2 | A3 5) | |-----------------------|-------|-------|----|----------------------| | NG | K01 | K52 | | | | 40 | 240 | 240 | 8 | M10 × 1.5; 15 deep | | 60 | 257 | 257 | - | M10 × 1.5; 15 deep | | 75 | 275 | 275 | _ | M10 × 1.5; 15 deep | | 95 | 306 | 306 | _ | M10 × 1.5; 12.5 deep | | 130/145 | 329 | 329 | _ | M10 × 1.5; 12.5 deep | | 130/145 ²⁾ | 363 | 363 | - | M10 × 1.5; 12.5 deep | | 190 | 359.8 | 359.8 | _ | M10 × 1.5; 13 deep | | 190 ²⁾ | 394.3 | 394.3 | _ | M10 × 1.5; 13 deep | | 260 | 385.1 | 385.1 | - | M10 × 1.5; 13 deep | | 260 ²⁾ | 427.1 | 427.1 | _ | M10 × 1.5; 13 deep | ## ▼ 101-2 (B) size 40 ... 145 ▼ 101-2 (B) size 190 ... 260 | | A1 | | | A2 | A3 5) | |-----------------------|-------|-------|-------|----|---------------------| | NG | K02 | K04 | K79 | | | | 40 | 244 | 244 | 249 | 10 | M12 × 1.75; 19 deep | | 60 | 261 | 261 | 265 | 10 | M12 × 1.75; 19 deep | | 75 | 279 | 279 | 283 | 10 | M12 × 1.75; 19 deep | | 95 | 303 | 303 | 303 | 10 | M12 × 1.75; 16 deep | | 130/145 | 326 | 326 | 326 | 10 | M12 × 1.75; 16 deep | | 130/145 ²⁾ | 360 | 360 | - | 10 | M12 × 1.75; 16 deep | | 190 | 369.8 | 369.8 | 369.8 | - | M12 × 1.75; 15 deep | | 190 ²⁾ | 404.3 | 404.3 | 404.3 | - | M12 × 1.75; 15 deep | | 260 | 395.1 | 395.1 | 395.1 | - | M12 × 1.75; 15 deep | | 260 ²⁾ | 437.1 | 437.1 | 437.1 | - | M12 × 1.75; 15 deep | According to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5 ²⁾ Version with charge pump ³⁾ The through-drive can be rotated by 90°. Standard position as shown (version 0°). Please specify in plain text whether version 90° is used. $_{\rm 4)}\,$ O-ring included in the scope of delivery ⁵⁾ Thread according to DIN 13. # Axial piston variable pump | **A11V(L)O series 1x**Dimensions, through-drive | Flange SAE J744 | Hub for splined shaft ¹⁾ | | | A | vailabilit | y across siz | es | | | Code ³⁾ | |-----------------|-------------------------------------|----|----|----|------------|--------------|------------------------------|-----|-----|--------------------| | Diameter | Diameter | 40 | 60 | 75 | 95 | 130/145 | 130/145 ²⁾ | 190 | 260 | | | 127-2 (C) | 1 1/4 in 14T 12/24 DP ¹⁾ | - | • | • | • | • | • | - | _ | K07 | | | 1 1/2 in 17T 12/24 DP ¹⁾ | _ | - | _ | • | • | • | _ | - | K24 | | | W 30 × 2 × 14 × 9g | _ | • | • | • | • | - | _ | - | K80 | | | W 35 × 2 × 16 × 9g | _ | • | • | • | • | • | - | - | K61 | | 127-2+4 (C) | 1 1/4 in 14T 12/24 DP ¹⁾ | - | - | - | - | - | - | • | • | K07 | | | 1 1/2 in 17T 12/24 DP ¹⁾ | _ | _ | _ | _ | _ | _ | • | • | K24 | | | W 30 × 2 × 14 × 9g | - | - | _ | _ | _ | _ | • | • | K80 | | | W 35 × 2 × 16 × 9g | - | - | - | | - | - | • | • | K61 | • = Available o = On request - = Not available ## ▼ 127-2 (C) | | A1 | | | | A2 | A3 5) | |-----------|-----|-----|-----|-----|----|------------------| | NG | K07 | K24 | K80 | K61 | | | | 60 | 272 | - | 265 | 265 | 13 | M16 × 2; 20 deep | | 75 | 290 | - | 290 | 290 | 13 | M16 × 2; 20 deep | | 95 | 318 | 318 | 318 | 318 | 13 | M16 × 2; 16 deep | | 130/145 | 330 | 341 | 330 | 330 | 13 | M16 × 2; 20 deep | | 130/1452) | 364 | 375 | 364 | 364 | 13 | M16 × 2; 20 deep | ## ▼ 127-2+4 (C) | | A1 | | | | A2 | A3 5) | |-------------------|-------|-------|-------|-------|----|------------------| | NG | K07 | K24 | K80 | K61 | | | | 190 | 365.8 | 367.8 | 367.8 | 367.8 | 13 | M16 × 2; 19 deep | | 190 ²⁾ | 400.3 | 402.3 | 400 | 400 | 13 | M16 × 2; 19 deep | | 260 | 391.1 | 391.1 | 391.1 | 391.1 | 13 | M16 × 2; 19 deep | | 260 ²⁾ | 433.1 | 433.1 | 433.1 | 433.1 | 13 | M16 × 2; 19 deep | According to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5 ²⁾ Version with charge pump ³⁾ The through-drive can be rotated by 90°. Standard position as shown (version 0°). Please specify in plain text whether version 90° is used. ⁴⁾ O-ring included in the scope of delivery ⁵⁾ Thread according to DIN 13. Dimensions [mm] | Flange SAE
J744 | Hub for splined shaft ¹⁾ | Availability across sizes | | | | Code ³⁾ | | | | | |--------------------|-------------------------------------|---------------------------|----|----|----|--------------------|-----------------------|-----|-----|-----| | Diameter | Diameter | 40 | 60 | 75 | 95 | 130/145 | 130/145 ²⁾ | 190 | 260 | | | 152-4 (D) | 1 1/4in 14T 12/24DP | - | _ | • | • | • | • | • | • | K86 | | | 1 3/4 in 13T 8/16 DP ¹⁾ | - | - | - | - | • | • | • | • | K17 | | | W 40 × 2 × 18 × 9g | - | - | • | • | • | • | • | • | K81 | | | W 45 × 2 × 21 × 9g | - | - | - | • | • | • | • | • | K82 | | | W 50 × 2 × 24 × 9g | - | - | - | | • | • | • | • | K83 | | 165-4 (E) | 1 3/4 in 13T 16/32 DP ¹⁾ | - | _ | _ | _ | - | _ | • | • | K72 | | | W 50 × 2 × 24 × 9g | - | - | _ | - | - | _ | • | • | K84 | | | W 60 × 2 × 28 × 9g | - | - | _ | _ | - | _ | - | • | K67 | • = Available • = On request - = Not available # ▼ 152-4 (D) # A3 O-ring⁴) 161.6 A1 (to mounting flange) | | A1 | | | | | A2 | A3 ⁵⁾ | |---------------------------|-----|-------|-------|-----|-------|----|-------------------------| | NG | K86 | K17 | K81 | K82 | K83 | | | | 75 | 290 | - | 290 | _ | - | 13 | M20 × 2.5; 28 deep | | 95 | 317 | 327 | 317 | 317 | - | 30 | M20 × 2.5; 25 deep | | 130/
145 | 340 | 350 | 340 | 340 | 340 | 13 | M20 × 2.5; 25 deep | | 130/
145 ²⁾ | 374 | 383 | 374 | 374 | 374 | 13 | M20 × 2.5; 25 deep | | 190 | 392 | 391.8 | 391.8 | 392 | 391.8 | 13 | M20 × 2.5; 22 deep | | 190 ²⁾ | 424 | 426.3 | 426.3 | 424 | 426.3 | 13 | M20 × 2.5; 22 deep | | 260 | 417 | 417.1 | 417.1 | 417 | 417.1 | 13 | M20 × 2.5; 22 deep | | 260 ²⁾ | 459 | 459.1 | 459.1 | 459 | 459.1 | 13 | M20 × 2.5; 22 deep | ## ▼ 165-4 (E) | | A1 | | | A2 | A3 ⁵⁾ | |-------------------|-------|-------|-------|----|-------------------------| | NG | K72 | K84 | K67 | | | | 190 | 389.8 | 374.8 | _ | 19 | M20 × 2.5; 26 deep | | 190 ²⁾ | 424.3 | 409.3 | - | 19 | M20 × 2.5; 20 deep | | 260 | 415.1 | 400.1 | 400.1 | 19 | M20 × 2.5; 20 deep | | 260 ²⁾ | 457.1 | 442.1 | 442.1 | 19 | M20 × 2.5; 20 deep | Bosch Rexroth AG, RE 92500/2023-05-11 5) Thread according to DIN 13. According to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5 $^{^{2)}}$ Version with charge pump ³⁾ Mounting holes pattern viewed on through-drive with control at top ⁴⁾ O-ring included in the scope of delivery Axial piston variable pump | **A11V(L)O series 1x**Overview of mounting options # **Overview of mounting options** | Through-driv | re | | Mounting option - 2nd | pump | | | |--------------|-----------------------|------|------------------------|---------------------------|-------------------------------|-----------------------| | Flange | Hub for splined shaft | Code | A11VO/10
NG (shaft) | A10V(S)O/31
NG (shaft) | A10V(S)O/53
NG (shaft) | A4VG/32
NG (shaft) | | 82-2 (A) | 5/8 in | K01 | - | 18 (U) | 10 (U) | - | | | 3/4 in | K52 | - | 18 (S) | 10 (S) | - | | 101-2 (B) | 7/8 in | K02 | - | 28 (S), 45 (U) | 28 (S), 45 (U) | - | | | 1 in | K04 | 40 (S) | 45 (S) | 45 (S), 60 (U) | 28 (S) | | | W35 | K79 | 40 (Z) | - | - | - | | 127-2/-4 (C) | 1 1/4 in | K07 | 60 (S) | 71 (S), 100 (U) | 60 (S) ¹⁾ , 85 (U) | 40, 56, 71 (S) | | | 1
1/2 in | K24 | - | 100 (S) | 85 (S) | - | | | W30 | K80 | - | - | - | 40, 56 (KXX) | | | W35 | K61 | 60 (Z) | - | - | 40, 56 (A), 71 (Z) | | 152-4 (D) | 1 1/4 in | K86 | 75 (S) | - | - | - | | | 1 3/4 in | K17 | 95, 130, 145 (S) | - | - | 90, 125 (S) | | | W40 | K81 | 75 (Z) | - | - | 125 (Z) | | | W45 | K82 | 95 (Z) | - | - | - | | | W50 | K83 | 130, 145 (Z) | - | - | - | | 165-4 (E) | 1 3/4 in | K72 | 190, 260 (S) | - | - | - | | | W50 | K84 | 190 (Z) | - | - | - | | | W60 | K67 | 260 (Z) | - | - | - | | Through-drive | е | | Mounting option - 2nd p | oump | | |---------------|-----------------------|------|-------------------------|---------------------|-----------------------------------| | Flange | Hub for splined shaft | Code | A4VG/40
NG (shaft) | A10VG
NG (shaft) | External gear pump ²⁾ | | 82-2 (A) | 5/8 in | K01 | - | - | AZPF, AZPS NG4 28, AZPW NG5 22 | | | 3/4 in | K52 | - | - | AZPF NG4 28 | | 101-2 (B) | 7/8 in | K02 | - | 18 (S) | AZPN-11 NG20 25, AZPG-22 NG28 100 | | | 1 in | K04 | - | 28, 45 (S) | - | | | W35 | K79 | - | - | - | | 127-2/-4 (C) | 1 1/4 in | K07 | - | 63 (S) | - | | | 1 1/2 in | K24 | - | - | - | | | W30 | K80 | - | - | - | | | W35 | K61 | - | - | - | | 152-4 (D) | 1 1/4 in | K86 | - | - | - | | | 1 3/4 in | K17 | 110, 125, 145, 175 (T1) | - | - | | | W40 | K81 | - | - | - | | | W45 | K82 | - | - | - | | | W50 | K83 | - | - | - | | 165-4 (E) | 1 3/4 in | K72 | 175 (T1) | - | - | | | W50 | K84 | - | - | - | | | W60 | K67 | - | - | - | ¹⁾ A10VO with 4-hole flange can only be mounted on A11V(L)O 190 and 260. ²⁾ Bosch Rexroth recommends special versions of the external gear pumps. Please contact us. 66 **A11V(L)O series 1x** | Axial piston variable pump Combination pumps A11V(L)O + A11V(L)O Dimensions [mm] # Combination pumps A11V(L)O + A11V(L)O # Total length A1) | A11VO (1st pump) | A11VO (| A11VO (2nd pump) | | | | | | A11VLO (2n | d pump) | | |------------------|---------|------------------|------|------|-----------|-------|-------|------------|---------|-------| | | NG40 | NG60 | NG75 | NG95 | NG130/145 | NG190 | NG260 | NG130/145 | NG190 | NG260 | | NG40 | - | - | _ | _ | _ | _ | _ | - | _ | _ | | NG60 | 490 | 507 | - | _ | _ | _ | _ | - | _ | _ | | NG75 | - | 525 | 550 | _ | _ | _ | _ | - | _ | _ | | NG95 | 528 | 560 | 577 | 604 | _ | _ | _ | - | _ | _ | | NG130/145 | 551 | 572 | 600 | 627 | 650 | _ | _ | 698 | _ | _ | | NG190 | 586.8 | 609.8 | 652 | 679 | 702 | 723.6 | | 750 | 772.3 | - | | NG260 | 620 | 633.5 | 677 | 704 | 727 | 746.8 | 772 | 775 | 795.5 | 828 | | A11VLO (1st pump) | A11VO (2 | A11VO (2nd pump) | | | | | | A11VLO (2n | d pump) | | |-------------------|----------|------------------|------|------|-----------|-------|-------|------------|---------|-------| | | NG40 | NG60 | NG75 | NG95 | NG130/145 | NG190 | NG260 | NG130/145 | NG190 | NG260 | | NG130/145 | 585 | 606 | 634 | 661 | 684 | _ | _ | 732 | _ | _ | | NG190 | 619 | 642 | 684 | 711 | 734 | 755.8 | - | 782 | 804.5 | - | | NG260 | 662.5 | 675.5 | 719 | 746 | 769 | 789.3 | 814.5 | 817 | 838 | 870.5 | By using combination pumps, it is possible to have independent circuits without the need for splitter gearboxes. When ordering combination pumps the type designations for the 1st and the 2nd pump must be joined by a "+". ## Order example: # A11VO130LRDS/10R-NZD12K61+ A11VO60LRDS/10-NZC12N00 A tandem pump, with two pumps of equal size, is permissible without additional supports, assuming that the dynamic mass acceleration does not exceed maximum 10 g (= 98.1 m/s^2). For combination pumps consisting of more than two pumps, the mounting flange must be calculated for the permissible mass torque. # Notice - ► The combination pump type code is shown in shortened form in the order confirmation. - The permissible through-drive torques are to be observed (see page 10). # ▼ Total length of a combination pump ¹⁾ When using the Z-shaft (splined shaft DIN 5480) for the mounted pump (2nd pump) Axial piston variable pump | **A11V(L)O series 1x** Swivel angle indicator # Swivel angle indicator # Optical swivel angle indicator V With the optical swivel angle indicator, the swivel position of the pump is indicated by a mechanical indicator on the side of the housing. # ▼ Circuit diagram # ▼ Swivel angle indicator | NG | Α | С | |-----|---------|---------| | 40 | 50.5 | 84.0 | | 60 | not ava | nilable | | 75 | 60.7 | 97.0 | | 95 | 63.5 | 104.0 | | 130 | 70.9 | 112.0 | | 190 | 87.6 | 123.5 | | 260 | 87.6 | 137.0 | 68 **A11V(L)O series 1x** | Axial piston variable pump Combination pumps A11V(L)O + A11V(L)O # Electric swivel angle sensor R With electric swivel angle indicator, the pump swivel position is measured by an electric swivel angle sensor. It has a robust, sealed housing and an integrated electronics unit that has been developed for automotive applications. As an output the Hall effect swivel angle sensor delivers a voltage signal proportional to the swivel angle. # ▼ Circuit diagram | Characteristics | | | | |---|--------------------------------------|--------------------------------|--| | Supply voltage $U_{ m b}$ | 10 3 | 0 V DC | | | Output voltage U_{a} | $2.5 \text{ V} \ (V_{\text{g min}})$ | 4.5 V
(V _{g max}) | | | Reverse polarity protection | Short circu | it resistant | | | EMC resistance | Details o | n request | | | Operating temperature range | −40 +125 °C | | | | Vibration resistance
sinusoidal vibration EN 60068-2-6 | 10 g / 5 2000 Hz | | | | Shock resistance:
continuous shock IEC 68-2-29 | 25 | g | | | Salt spray resistance
DIN50021-SS | 96 | i h | | | Type of protection DIN/EN 60529 | IP67 and IP69K | | | | Housing material | Pla | stic | | ## **AMP Superseal mating connector** | Consisting of | | AMP designation | |---------------|--------------|-----------------| | 1 housing | 3-pin | 282087-1 | | 3 seals | yellow | 281934-2 | | 3 sockets | 1.8 - 3.3 mm | 283025-1 | The mating connector is not included in the scope of delivery. This can be supplied by Bosch Rexroth on request (material number R902602132). # ▼ Electric swivel angle sensor | NG | Α | В | С | | |-----|------|---------------|-------|--| | 40 | 50.5 | 88.5 | 118.3 | | | 60 | | not available | | | | 75 | 60.7 | 98.7 | 131.3 | | | 95 | 63.5 | 101.5 | 138.3 | | | 130 | 70.9 | 108.9 | 146.3 | | | 190 | 87.6 | 125.6 | 157.8 | | | 260 | 87.6 | 125.6 | 171.3 | | | | | | | | Axial piston variable pump | **A11V(L)O series 1x** 69 Connector for solenoids ## **Connector for solenoids** # DEUTSCH DT04-2P-EP04 Molded, 2-pin, without bidirectional suppressor diode The following type of protection ensues with the installed mating connector: - ▶ IP67 (DIN/EN 60529) and - ► IP69K (DIN 40050-9) # **▼** Switching symbol # Mating connector DEUTSCH DT06-2S-EP04 | Consisting of | DT designation | |---------------|----------------| | 1 housing | DT06-2S-EP04 | | 1 wedge | W2S | | 2 sockets | 0462-201-16141 | The mating connector is not included in the scope of delivery. This can be supplied by Bosch Rexroth on request (material number R902601804). # Notice - ► If necessary, you can change the position of the connector by turning the solenoid body. - ▶ The procedure is defined in the instruction manual. 70 A11V(L)O series 1x | Axial piston variable pump Installation instructions # **Installation instructions** #### General The axial piston unit must be filled with hydraulic fluid and vented during commissioning and operation. This must also be observed during longer standstills, as the axial piston unit can empty itself via the hydraulic lines. Particularly in the installation position "drive shaft upwards", filling and air bleeding must be carried out completely as there is, for example, a danger of dry running. The leakage in the housing area must be directed to the reservoir via the highest drain port $(\mathbf{T}_1/\mathbf{T}_2)$. For combination pumps, the leakage must be drained off at each single pump. If a shared drain line is used for several units, make sure that the respective case pressure in each unit is not exceeded. The shared drain line must be dimensioned to ensure that the maximum permissible case pressure of all connected units is not exceeded in any operating condition, particularly at cold start. If this is not possible, separate drain line must be laid, if necessary. To prevent the transmission of structure-borne noise, use elastic elements to decouple all connecting lines from all vibration-capable components (e.g. reservoir, frame parts). Under all operating conditions, the suction line and drain line must flow into the reservoir below the minimum fluid level of the reservoir. The permissible suction height h_{S} results from the total pressure loss, but must not be higher than $h_{S max}$ = 800 mm. The minimum suction pressure at port S of 0.8 bar absolute (without charge pump) or 0.6 bar absolute (with charge pump) must not be fallen below during operation (cold start 0.5 bar absolute). For the reservoir design, ensure that there is an adequate distance between the suction line and the drain line. We recommend using a baffle (baffle plate) between suction line and drain line. A baffle improves the air separation ability as it gives the hydraulic fluid more time for desorption. Apart from that, this prevents the heated return flow from being drawn directly back into the suction line. The suction port must be supplied with air-free, calmed and cooled hydraulic fluid. # **Installation position** See the following examples 1 to 10. Further installation positions are available upon request. Recommended installation position: 1 and 2 | Key | | |---|--| | F_1/F_2 | Filling / Air bleeding | | S | Suction port | | T ₁ / T ₂ | Drain port | | SB | Baffle (baffle plate) | | $h_{\text{t min}}$ | Minimum required immersion
depth (200 mm) | | \mathbf{h}_{min} | Minimum required distance to reservoir bottom (100 mm) | | h _{ES min} | Minimum height required to prevent axial piston unit from draining (25 mm) | | h _{S max} | Maximum permissible suction height (800 mm) | | | | #### Notice - In certain installation positions, an influence on the control or control can be expected. Gravity, dead weight and case pressure can cause minor characteristic shifts and changes in actuating time. - Ports F₁ and F₂ are part of the external piping and must be provided on the customer side to make filling and air bleeding easier. # Axial piston variable pump | **A11V(L)O series 1x** 71 Installation instructions # Below-reservoir installation (standard) Below-reservoir installation means that the axial piston unit is installed outside of the reservoir below the minimum fluid level. # ▼ Installation position 1 | Air bleeding the housing | Filling | | |---|-------------------------------------|--| | F ₁ (T ₁) | F ₁ (T ₁), S | | | | SB h _{t m} | | # ▼ Installation position 4 ## ▼ Installation position 2 # ▼ Installation position 3 For key, see page 70. # 72 **A11V(L)O series 1x** | Axial piston variable pump Installation instructions ## **Above-reservoir installation** Above-reservoir installation means that the axial piston unit is installed above the minimum fluid level of the reservoir. To prevent the axial piston unit from draining, a height difference $h_{\text{ES min}}$ of at least 25 mm at port ${\bf R}$ is required in position 7. The version A11VLO (with charge pump) is not intended for above-reservoir installation. Recommendation for installation position **7** (shaft upward): A check valve in the drain line (cracking pressure 0.5 bar) can prevent draining of the housing area. For control options with pressure controllers, stroke limiters, HD and EP control, the minimum displacement setting must be $\mathbf{V}_g \geq 5~\%~V_{g~max}$. Observe the maximum permissible suction height $h_{\text{S max}}$ = 800 mm. #### ▼ Installation position 5 | Air bleeding the housing | g Filling | | |---|---|--| | F ₁ (T ₁), F ₂ (S) | $F_1(T_1), F_2(S)$ | | | | R T ₂ h _{S max} h _{t min} h _{min} | | # ▼ Installation position 6 | Air bleeding the housing Filling | | |---------------------------------------|---| | R, F ₂ (S) | $\mathbf{F}_1 (\mathbf{T}_2), \mathbf{F}_2 (\mathbf{S})$ | | 1-2 | SB h _{s max} h _{t min} h _{min} | For key, see page 70. Bosch Rexroth AG, RE 92500/2023-05-11 #### ▼ Installation position 7 73 # Axial piston variable pump | A11V(L)O series 1x Installation instructions #### **Inside-reservoir installation** Inside-reservoir installation is when the axial piston unit is installed in the reservoir below the minimum fluid level. The axial piston unit is completely below the hydraulic fluid. If the minimum fluid level is equal to or below the upper edge of the pump, see chapter "Above-reservoir installation". Axial piston units with electric components (e.g. electric controls, sensors) may not be installed in a reservoir below the fluid level. If inside-reservoir installation is intended nevertheless, the IP protection class and the medium compatibility of the electric components used must be checked in the individual case. Please consult your proper contact person at Bosch Rexroth to commission an examination of the medium compatibility. # ▼ Installation position 8 | Air bleeding the housing | Filling | |--------------------------|--| | T ₁ | The housing of the axial piston | | | unit is to be filled via \mathbf{T}_1 before | | | attachment of the piping | # ▼ Installation position 9 | Air bleeding the housing | Filling | |--------------------------|------------------------------------| | R | The housing of the | | | axial piston unit is to be filled | | | via T_1/T_2 before attachment of | | | the piping | ## ▼ Installation position 10 | Air bleeding the housing | Filling | |--------------------------|--| | R | The housing of the | | | axial piston unit is to be filled | | | using \mathbf{T}_2 before attachment | | | of the piping | #### Notice - ► Installation of the pump with EP control in the oil reservoir only when using mineral hydraulic oils and an oil temperature in the reservoir of max. 80 °C. - ► In this case, the other drain port must be plugged. The housing of the axial piston unit must be filled before fitting the piping and filling the reservoir with hydraulic fluid. For key, see page 70. 74 **A11V(L)O series 1x** | Axial piston variable pump Project planning notes # **Project planning notes** - ▶ The pump is designed to be used in open circuits. - Project planning, installation and commissioning of the axial piston units requires the involvement of skilled personnel. - Before using the axial piston unit, please read the corresponding instruction manual completely and thoroughly. If necessary, this can be requested from Bosch Reyroth. - Before finalizing your design, please request a binding installation drawing. - The specified data and notes contained herein must be observed. - ► Depending on the operating conditions of the axial piston unit (working pressure, fluid temperature), the characteristic curve may shift. - ▶ Preservation: Our axial piston units are supplied as standard with preservation protection for a maximum of 12 months. If longer preservation protection is required (maximum 24 months), please specify this in plain text when placing your order. The preservation periods apply under optimal storage conditions, details of which can be found in the data sheet 90312 or the instruction manual. - Not all versions of the product are approved for use in a safety function according to ISO 13849. Please consult the responsible contact person at Bosch Rexroth if you require reliability parameters (e.g. MTTF_D) for functional safety. Depending on the type of control used, electromagnetic - effects can be produced when using solenoids. Applying a direct voltage signal (DC) to solenoids does not create electromagnetic interference (EMI) nor is the solenoid affected by EMI. Electromagnetic interference (EMI) potential exists when operating and controlling a solenoid with a modulated direct voltage signal (e.g. PWM signal) Appropriate testing and measures should be taken by the machine manufacturer to ensure other components or operators (e.g. with pacemaker) are not affected by this potential. - Pressure controllers are not safeguards against pressure overload. Be sure to add a pressure relief valve to the hydraulic system. - ▶ For controllers requiring external pilot pressure, sufficient control fluid must be provided to the associated ports to ensure the required pilot pressures for the respective controller function. These controllers are subject to leakage due to their design. An increase in control fluid demand has to be anticipated over the total operating time. The design of the control fluid supply must thus be sufficiently large. If the control fluid is too low, the respective controller function may be impaired and undesired system behavior may result. - ▶ Please note that a hydraulic system is an oscillating system. This can lead, for example, to the stimulation the natural frequency within the hydraulic system during operation at constant rotational speed over a long period of time. The excitation frequency of the pump is 9 times the rotational speed frequency. This can be prevented, for example, with suitably designed hydraulic lines. - ▶ Please note the details regarding the tightening torques of port threads and other threaded joints in the instruction manual. - ▶ The ports and fastening threads are designed for the p_{max} permissible pressures of the respective ports, see the connection tables. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified application conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors. - The working ports and function ports are only intended to accommodate hydraulic lines. Axial piston variable pump | **A11V(L)O series 1x** 75 Safety instructions # **Safety instructions** - ▶ During and shortly after operation, there is a risk of burning on the axial piston unit and especially on the solenoids. Take the appropriate safety measures (e.g. by wearing protective clothing). - Moving parts in control equipment (e.g. valve spools) can, under certain circumstances, get stuck in position as a result of contamination (e.g. contaminated hydraulic fluid, abrasion, or residual dirt from components). As a result, the hydraulic fluid flow and the build-up of torque in the axial piston unit can no longer respond correctly to the operator's specifications. Even the use of various filter elements (external or internal flow filtration) will not rule out a fault but merely reduce the risk. The machine/system manufacturer must test whether remedial measures are needed on the machine for the application concerned in order to bring the driven consumer into a safe position (e.g. safe stop) and ensure any measures are properly implemented.